King Fahd University of Petroleum and Minerals College of Computing and Mathematics Department of Mathematics

Math 432 - Major Exam I AY 2023-2024 (Term 232) Time Allowed: 120 Minutes

Name:	 ID number:	

- Textbook, notes, mobiles and smart devices are not allowed in this exam.
- Write neatly and legibly. You may lose points for messy work.
- Show all your work. No points for answers without justification.

Question	Marks	Max Marks
1		25
2		15
3		15
4		20
5		15
6		10
Total		100

1. Given the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 4 & 11 & 16 \end{bmatrix}$$

- (a) Find elementary matrices E_1 , E_2 , and E_3 such that $E_3E_2E_1A = U$, where U is an upper triangular matrix.
- (b) Find the LU factorization of the matrix A (i.e., demonstrate that A = LU).
- (c) Using the results from part (b), solve the system Ax = d where $d = \begin{bmatrix} 1\\0\\3 \end{bmatrix}$.
- 2. Under what conditions on its entries is the matrix B invertable?

$$B = \begin{bmatrix} a & b & c \\ d & e & 0 \\ f & 0 & 0 \end{bmatrix}$$

3. Under what conditions on b_1 and b_2 (if any) does Ax = b have a solution?

$$A = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 2 & 4 & 0 & 7 \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Find the nullspace of A, and the complete solution to Ax = b.

4. Consider the following 3×5 matrix

$$A = \begin{bmatrix} 1 & 2 & 0 & 2 & 1 \\ -1 & -2 & 1 & 1 & 0 \\ 1 & 2 & -3 & -7 & -2 \end{bmatrix}$$

Find the reduced row echelon form R, and write down the bases for the four fundamental subspaces associated with A.

- 5. Solve **3** questions from the following:
 - (a) Find a 1 by 3 matrix whose nullspace consists of all vectors in \mathbb{R}^3 such that $x_1 + 2x_2 + 4x_3 = 0$. Find a 3 by 3 matrix with the same nullspace.
 - (b) If Ax = b always has at least one solution, show that the only solution to $A^T y = 0$ is y = 0.
 - (c) If AB = 0, the columns of B are in the nullspace of A. If those vectors are in \mathbb{R}^n , prove that $rank(A) + rank(B) \leq n$.
 - (d) If u and v are linearly independent vectors, show that u + v and u v are linearly independent.
 - (e) Show that the set of all positive real numbers, with x + y and cx redefined to equal the usual xy and x^c , is a vector space. What is the "zero vector"?
- 6. Write down the 6 by 4 incidence matrix of the following graph:

