King Fahd University of Petroleum and Minerals College of Computing and Mathematics Department of Mathematics

Math 432 - Final Exam AY 2023-2024 (Term 232) Time Allowed: 180 Minutes

Name: ID number:

- Textbook, notes, mobiles and smart devices are not allowed in this exam.
- Write neatly and legibly. You may lose points for messy work.
- Show all your work. No points for answers without justification.

Question	Marks	Max Marks
1		40
2		10
3		15
4		15
5		15
6		10
7		15
8		20
Total		140

Suppose A is symmetric positive definite and Q is an orthogonal matrix. Answer **True** or **False**, give a reason if true or a counterexample if false:

1. $Q^T A Q$ is a diagonal matrix. (_____)

2. $Q^T A Q$ is symmetric positive definite. (_____)

3. $Q^T A Q$ has the same eigenvalues as A. (_____)

4. e^{-A} is symmetric positive definite. (_____)

5. Every positive definite matrix is invertible. (_____)

6. The only positive definite projection matrix is P = I. (_____)

7. Any diagonal matrix with positive diagonal entries is positive definite. (_____)

8. Any symmetric matrix with positive determinant is positive definite. (_____)

9. Every invertible matrix can be diagonalized. (_____)

10. Every diagonalizable matrix can be inverted. (_____)

For which s and t are A and B positive definite?

$$A = \begin{bmatrix} s & -4 & -4 \\ -4 & s & -4 \\ -4 & -4 & s \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} t & 3 & 0 \\ 3 & t & 4 \\ 0 & 4 & t \end{bmatrix}.$$

For the given matrix:

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

- 1. Find the singular value decomposition (SVD) of the matrix A, i.e., $A = U\Sigma V^T$.
- 2. Define the pseudoinverse and find A^+ .
- 3. Find the norm and condition number of A.
- 4. Which four vectors give orthonormal bases for the four fundamental subspaces of A?

Find the minimum-length least-squares solution $x^+ = A^+ b$ to the following:

$$Ax = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}.$$

You can compute A^+ , or find the general solution to $A^T A \tilde{x} = A^T b$ and choose the solution that is in the row space of A.

Verify that $x^+ = A^+ b$ is in the row space and $A^T A x^+ = A^T b$.

- 1. Define the Rayleigh quotient R(x) and state the Rayleigh's Principle.
- 2. Show that the diagonal entries of any symmetric matrix are between λ_{min} and λ_{max} .
- 3. For any symmetric matrix A, compute the ratio R(x) for the special choice x = (1, ..., 1). How is the sum of all entries a_{ij} related to λ_{min} and λ_{max} ?

Use Gram–Schmidt to construct an orthonormal pair q_1 , q_2 from $a_1 = (4, 5, 2, 2)^T$ and $a_2 = (1, 2, 0, 0)^T$. Express a_1 and a_2 as combinations of q_1 and q_2 , and find the triangular R in A = QR. (A is 4×2 matrix with columns a_1, a_2)

A door is opened between rooms that hold v(0) = 30 people and w(0) = 10 people. The movement between rooms is proportional to the difference v - w:

$$\frac{dv}{dt} = w - v$$
 and $\frac{dw}{dt} = v - w.$

1. Show that the total v + w is constant (40 people).

- 2. Find the matrix A in $\begin{bmatrix} \frac{dv}{dt} \\ \frac{dw}{dt} \end{bmatrix} = A \begin{bmatrix} v \\ w \end{bmatrix}$, and its eigenvalues and eigenvectors.
- 3. What are v and w at t = 1?

Suppose the matrices in PA = LU are

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 & 3 & 2 \\ 2 & -1 & 4 & 2 & 1 \\ 4 & -2 & 9 & 1 & 4 \\ 2 & -1 & 5 & -1 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 4 & 2 & 1 \\ 0 & 0 & 1 & -3 & 2 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- 1. What is the rank of A?
- 2. What is a basis for the row space of A?
- 3. True or false: The rows 1, 2, 3 of A are linearly independent.
- 4. What is a basis for the column space of A?
- 5. What is the dimension of the left nullspace of A?