

College of Computing and Mathematics Department of Mathematics

MATH435 – Ordinary Differential Equations SYLLABUS AY 2021-2022 (Term 212)

Instructor: Dr. Khairul Saleh

Course #:	MATH 435		
Course Title:	Ordinary Differential Equations		
Textbook:	The qualitative theory of ordinary differential equations: an introduction. By F. Brauer and J. A. Nohel, Dover Publications, Inc. NY (1969).		
Course Objective:	The course aims to introduce basic concepts of existence, uniqueness, asymptotic behavior and stability of solutions to ordinary differential equations.		
Course description:	First order scalar differential equations. Initial value problems. Existence, uniqueness, continuous dependence on initial data. Linear systems with constant coefficients. The exponential matrix. Asymptotic behavior of linear and almost linear systems. Two dimensional autonomous systems. Critical points and their classifications. Phase plane analysis. Introduction to the theory of Lyapunov stability.		
Prerequisites:	MATH 202 and MATH 225, or MATH 208.		
Course Learning outcomes:	 Upon successful completion of this course, a student should be able to: Apply existence and uniqueness theory for initial value problems. Discuss asymptotic behavior of linear and almost linear systems and the theory of Lyapunov stability. Solve linear systems of differential equations, including higher order equations with constant coefficients. Calculate and classify critical points of autonomous systems. 		

Week	Date	Section		
1	16-20 Jan	1.1 A single Mass-Spring Systems		
		1.2 Coupled Mass-Spring Systems		
2	23-27 Jan	1.3 Systems of First-Order Equations		
		1.6 Existence, Uniqueness, and Continuity		
3	30 Jan – 3 Feb	1.7 The Gronwall Inequality Exercise Session		
4	6-10 Feb	2.2 Existence and Uniqueness for Linear Systems		
		2.3 Linear Homogeneous Systems		
		2.4 Linear Nonhomogeneous Systems		
5	13-17 Feb	2.5 Linear Systems with Constant Coefficients		
6	20-24 Feb	2.6 Similarity of Matrices and the Jordan Canonical Form		
		2.7 Asymptotic Behavior of Solutions of Linear Systems with Constant Coefficients		
Major Exam 1. Material: 1.1-2.5. Date: Tuesday (March 01, 2022). Time: 2:00PM – 4:00PM				
7	27 Feb – 3 Mar	2.8 Autonomous Systems – Phase Space – Two dimensional Systems		
		2.9 Linear Systems with Periodic Coefficients		
8	6-10 Mar	3.1 Existence in the Scalar Case Exercise Session		
9	13-17 Mar	3.2 Existence Theory of Systems of First-Order Equations		
		3.3 Uniqueness of Solutions		
10	20-24 Mar	3.4 Continuation of Solutions		
		3.5 Dependence on Initial Conditions and Parameters		
11	27-31 Mar	4.2 Definitions of Stability		
		4.3 Linear Systems		
12	3-7 Apr	4.4 Almost Linear Systems		
		4.5 Conditional Stability		
Major Exam 2. Material: 2.6-2.9 & 3.1-3.5. Date: Thursday (April 7, 2022). Time: 2:00PM – 4:00PM				
13	10-14 Apr	4.6 Asymptotic Equivalence		
		4.7 Stability of Periodic Solutions		
14	17-21 Apr	5.2 Lyapunov's Theorems		
		5.3 Proofs of Lyapunov's Theorems		
24 Apr – 5 May: Eid Al-Fitr Holidays				
15	8-12 May	5.4 Invariant Sets and Stability		
		5.5 The Extent of Asymptotic Stability – Global Asymptotic Stability		
Final Exam: Comprehensive. Date: TBD				

Grading Policy:

Major Exam 1:	20%
Major Exam 2:	20%
Homework Assignments:	15%
Project:	10%
Final Exam:	35%

Attendance:

9 unexcused absences will result in a DN grade.

Academic Integrity: All KFUPM ethics policies apply in this course.