King Fahd University of Petroleum and Minerals College of Computing Mathematics Department Math 437 Syllabus

Instructor: Zaid Sawlan zaid.sawlan@kfupm.edu.sa

Semester 221

- Course Code and Name: Math 437, Partial Differential Equations
- Course Credit Hours: 3-0-3
- Textbook: Beginning Partial Differential Equation. by P. O'Neil.
- Course Content: First order quasilinear equations. Lagrange method and Characteristics. Classification of linear second order PDEs. Brief review of separation of variables. The one dimensional wave equation: its solution and characteristics. Cauchy problem for the wave equation. Laplace's equation: The maximum principle, uniqueness theorems. Green's function. Neumann's function. The heat equation in one dimension.

Course Prerequisite: MATH 333

• Course Learning Outcomes:

Upon completion of the course, students should be able to:

- 1. Solve linear and quasi-linear first order PDEs in two variables using the characteristic method.
- 2. Classify second-order equations in two variables by type (parabolic, hyperbolic, elliptic).
- 3. Use separation of variables to solve some PDEs.
- 4. Apply the maximum principle to the Laplace and heat equations.

Grading Policy:

	Date	Material	Percentage
Major Exam I	Oct 2, 2022	1.1, 1.2, 1.3, 2.1, 2.2 and 2.4 20%	
Major Exam II	Nov 6, 2022	3.1, 3.2, 4.1, 4.2, 4.3, 4.4 and 4.5	20%
Final Exam	Dec 28, 2022	Comprehensive	35%
Class work		Homeworks + Attendance 10%	
Project	Dec 11-15, 2022	List of projects 15%	

Exam Questions:

The questions of the exams are based on the examples, homework problems, and exercises in the textbook.

Exams Policy:

- No student will be allowed to take the exam if he doesn't bring his KFUPM, National, or Iqama ID card with him to the exam hall.
- Students are not allowed to carry mobiles, smart watches, or electronic devices to the exam halls/rooms.
- Missing an Exam: In case a student misses an exam (Exam I, Exam II, or the Final Exam) for a legitimate reason (such as medical emergencies), he must bring an official excuse from Students Affairs. Otherwise, he will get zero in the missed exam.

Attendance:

Attendance is a University Requirement (see p. 38 of the Undergraduate Bulletin 2006-2009).

- If a student misses a class, he is responsible for any announcement made in that class.
- A DN grade will be awarded to any student who accumulates 9 unexcused absences.

Academic Integrity:

All KFUPM policies regarding ethics apply to this course. See the Undergraduate Bulletin.

Week	Date	Sections and Topics	Suggested Problems	
1	Aug 28 - Sep 1	1 First Ideas 1.1 Two Partial Differential Equations	2, 4, 7, 8, 9, 10, 11, 12, 14, 16	
2	Sep 4 - 8	1.2 Fourier Series 1.3 Two Eigenvalue Problems	$\begin{array}{c} 1,4,6,8,10,14,16,20\\ 1,2,3,4 \end{array}$	
3	Sep 11 - 15	2 Solutions of the Heat Equation 2.1 Solutions on an Interval [0, L]	6, 8, 10, 12, 14, 18, 20, 22	
4	Sep 18 - 20	2.2 A Nonhomogeneous Problem2.4 The Weak Maximum Principle	$2, 4, 6, 7, 8, 9, 10 \\1, 2, 3, 4$	
	Sep 22	National Day Holiday		
5	Sep 25 - 29	3 Solutions of the Wave Equation 3.1 Solutions on Bounded Intervals	$\begin{array}{c} 1,2,3,7,8,9,10,14,18,19,\\ 21,22,25,26 \end{array}$	
	Oct 2	Major Exam I: 1.1-2.4		
6	Oct 2 - 6	3.2 The Cauchy Problem3.2.1 d'Alembert's Solution3.2.2 The Cauchy Problem on a Half-Line	$ \begin{array}{c} \\ 1, 2, 4, 8, 10, 12, 13, 18 \\ 1, 3, 6, 9, 10 \end{array} $	
7	Oct 9 - 13	 4 Dirichlet and Neumann Problems 4.1 Laplace's Equation and Harmonic Functions 4.2 The Dirichlet Problem for a Rectangle 	$ \begin{array}{c} \\ 1, 2, 3, 4 \\ 1, 2, 4, 6, 7 \end{array} $	
8	Oct 16 - 20	4.3 The Dirichlet Problem for a Disk4.4 Properties of Harmonic Functions (Review)	$\stackrel{2, 4, 6, 7, 8, 12, 16}{-}$	
9	Oct 23 - 27	 4.4.3 Mean Value Property and Maximum Principle 4.5 The Neumann Problem 4.5.1 Uniqueness and Existence 4.5.2 Neumann Problem for a Rectangle 4.5.3 Neumann Problem for a Disk 	$\begin{array}{c} 2, 3, 4, 5, 8 \\$	
10	Oct 30 - Nov 3	4.6 Poisson's Equation4.7 Existence Theorem for a Dirichlet Problem	$\begin{array}{c}1\;,\;2,\;3,\;4\\1,\;2,\;3\end{array}$	
	Nov 6	Major Exam 2: 3.1-4.5		
11	Nov 6 - 10	5 Fourier Integral Methods of Solution5.1 The Fourier Integral of a Function5.2 The Heat Equation on a Real Line	4, 6, 10, 12, 14, 15, 16, 17 2, 4, 6, 8, 9, 12, 14, 16	
12	Nov 13 - 17	5.5 The Cauchy Problem for a Wave Equation 5.6 Laplace's Equation on Unbounded Domains	7, 8, 10, 12, 14 7, 8, 10, 12, 14, 16	
13	Nov 20 - 24	 8 First-Order Equations 8.1 Linear First-Order Equations 8.2 The Significance of Characteristics 	$2, 4, 6, 8, 10, 12 \\2, 4, 6$	
	Nov 27 - Dec 1	Midterm Break		
14	Dec 4 - 8	8.3 The Quasi-Linear Equation	2, 4, 6, 8, 10, 12	
15	Dec 11 - 15	Project presentations		
16	Dec 18	Revision		