King Fahd University of Petroleum and Minerals Department of Mathematics MATH441 - Advanced Calculus II Exam I – Semester 222

- (a) Show that any open ball $B_r(x) = \{y \in \mathbb{R}^n : ||x y|| < r\}$ is open in \mathbb{R}^n .
- (b) Let $(F_i)_{i \in I}$ be a collection of closed sets in \mathbb{R}^n . Show that $\bigcap_{i \in I} F_i$ is a closed subset of \mathbb{R}^n .
- (c) Let *S* be a subset of \mathbb{R}^n . Show that $\partial S = \overline{S} \cap \overline{S^c}$. Deduce that ∂S is closed.
- (d) Let *S* be an open set of \mathbb{R}^n , show that $(\partial S)^\circ = \emptyset$. (Hint: the proof is by contradiction and use (c))

Let (x_k) and (y_k) be two sequences in \mathbb{R}^n with $x_k \to x$ and $y_k \to y$. Show that

- (a) For $a, b \in \mathbb{R}$, show that $ax_k + by_k \rightarrow ax + by$.
- (b) Show that $x_k \to x$ if and only if $x_k^i \to x^i$ for all $i = 1 \dots n$.

- (a) Show that if *F* is a closed subset of *S*, a compact subset of \mathbb{R}^n , then *F* is compact.
- (b) Show that a closed subset of a complete metric space is complete.
- (c) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a continuous function and *K* is a compact set of \mathbb{R}^n . Using sequential compactness, show that f(K) is a compact subset of \mathbb{R}^m .

Let $T: U \rightarrow V$ be a linear transformation between two normed vector spaces.

- (a) Define *T* is bounded.
- (b) Show that if $U = \mathbb{R}^n$, then *T* is bounded.
- (c) Show that *T* is bounded if and only if *T* is continuous.

- (a) Let $f : X \to Y$ be continuous between two metric spaces. Show if X is compact, then f is uniformly continuous on X.
- (b) Show that $f(x) = \frac{1}{x}$ is not uniformly continuous on (0, 1).
- (c) Let $f: \Omega \to \mathbb{R}^m$ be a uniformly continuous on $\Omega \subset \mathbb{R}^n$. Show that
 - (i) If (x_k) is a Cauchy sequence in Ω , then the sequence $(f(x_k))$ is Cauchy in \mathbb{R}^m .
 - (ii) Show that if Ω is bounded then $f(\Omega)$ is bounded. (Hint: use that f can be extended continuously on $\overline{\Omega}$)
 - (iii) Give an example of a continuous function f such that Ω is a bounded interval but $f(\Omega)$ is not bounded.

Let

$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

(a) Show that f is continuous at (0, 0).

- (a) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a continuous. Show that $f^{-1}(F)$ is closed in \mathbb{R}^n for any *F*, a closed subset in \mathbb{R}^m .
- (b) Define a homeomorphism between two metric spaces (X, d_X) and (Y, d_Y) .
- (c) Show that $f : [-\pi, \pi) \to S^1$, where $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ is the unit circle, defined by $f(\theta) = e^{i\theta}$ is continuous, bijection but f^{-1} is not continuous on S^1 .
- (d) Let *S* be a compact subset of \mathbb{R}^n and let $f : S \to \mathbb{R}^m$ be a continuous and one-to-one on *S*. Show that $f^{-1} : f(S) \to S$ is continuous. (Hint use (a))