King Fahd University of Petroleum and Minerals Department of Mathematics MATH441 - Advanced Calculus II Exam 2 – Semester 222

Let

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- (a) Show that f is continuous on \mathbb{R}^2 .
- (b) Find $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$.
- (c) Show that f is not differentiable at (0,0).

Let

$$u = xyf(\frac{x+y}{xy}),$$

where $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function. Show that *u* satisfies the partial differential equation

$$x^2\frac{\partial u}{\partial x} - y^2\frac{\partial u}{\partial y} = g(x,y)u,$$

and find *g*.

Exercise 3 Let

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Examine the equality of $f_{xy}(0,0)$ and $f_{yx}(0,0)$.

Let $x \in \mathbb{R}^n$ and $x \neq 0$, let f(x) = g(r), where r = ||x|| and g is C^2 on $(0, \infty)$.

(a) Show that

$$\Delta f = g''(r) + \frac{n-1}{r}g'(r)$$

(b) Find all radial harmonic functions on $\mathbb{R}^n \setminus \{0\}$.

- Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be $f(x, y) = (2ye^{2x}, xe^y)$ and $g : \mathbb{R}^2 \to \mathbb{R}^3$ defined by $g(x, y) = (3x y^2, 2x + y, xy + y^3)$.
- (a) Show that there exists a neighborhood of (0,1) that f carries in a one-to-one fashion onto a neighborhood of (2,0).
- (b) Find $D_{g \circ f^{-1}}(2, 0)$.

(a) Show that the equations

$$xy^5 + yu^5 + zv^5 = 1$$

$$x^5y + y^5u + z^5v = 1$$

have a unique solution (u, y) = f(x, y, z) near the point (0, 1, 1, 1, 0)

(b) Find the derivative $D_f(0, 1, 1)$.