King Fahd University of Petroleum and Minerals Department of Mathematics MATH 441 - Semester 242 Midterm Exam

- 1. Let (x_k) be a sequence in \mathbb{R}^n such that $||x_k x_j|| < \frac{1}{k} + \frac{1}{j}$ for all integers *j*, *k*. Show that (x_k) converges.
- 2. Let $\{S_k : k = 1, 2, ...\}$ be a sequence of closed sets in \mathbb{R}^n such that

 $S_{k+1} \subseteq S_k$ for every k and $d(S_k) \to 0$ as $k \to \infty$.

Show that $\bigcap_{k=1}^{\infty} S_k = \{x\}.$

1. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{x^{\alpha} y^{\beta}}{x^2 + xy + y^2}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{if } (x,y) = (0,0), \end{cases}$$

where $\alpha, \beta \in \mathbb{R}$. Under what condition on α and β is f continuous at (0,0)?

2. Consider the function $g(x, y) = \frac{1}{x^2 + y^2 - 1}$. Is *g* uniformly continuous in the open unit disk of \mathbb{R}^2 ?

1. Let *X* be compact and C(X) be the set of all continuous functions $f : X \to \mathbb{R}$. Show that C(X) is a complete metric space under

$$d(f,g) = ||f-g|| = \sup_{x \in X} |f(x) - g(x)|.$$

2. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Show that *T* is bounded if and only if it maps bounded sets in \mathbb{R}^n to bounded sets in \mathbb{R}^m .

- 1. Let *X* be a metric space, show that any union of open sets is open.
- 2. Show that a function $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous if and only if for each open set $V \subseteq \mathbb{R}^m$, the preimage $f^{-1}(V)$ is open in \mathbb{R}^n .
- 3. Suppose *S* is compact, and $f : S \to \mathbb{R}$ be continuous with f(x) > 0 for every $x \in S$. Show that there exists a constant c > 0 such that f(x) > c for every $x \in S$.

1. For $x \in \mathbb{R}^n \setminus \{0\}$, let F(x) = f(r) where f is a C^2 function on $(0, \infty)$ and r = ||x||. Show that

$$\frac{\partial^2 F}{\partial x_1^2} + \cdots + \frac{\partial^2 F}{\partial x_n^2} = f''(r) + (n-1)\frac{f'(r)}{r}.$$

2. Find all radial harmonic functions on $\mathbb{R}^n \setminus \{0\}$.

- 1. Show that the function $f(x, y) = \sqrt{xy}$ is not differentiable at (0, 0).
- 2. Let $\alpha > \frac{1}{2}$. Show that the function $f(x, y) = |x y|^{\alpha}$ is differentiable at (0, 0).

- 1. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be given by $f(x, y) = (x^2 + y, 2xy y^2)$. Find the Jacobian $J_f(x, y)$.
- 2. Let $u = xy f\left(\frac{x+y}{xy}\right)$, where $f : \mathbb{R} \to \mathbb{R}$ is differentiable. Show that u satisfies the partial differential equation

$$x^2 \frac{\partial u}{\partial x} - y^2 \frac{\partial u}{\partial y} = g(x, y),$$

and find g(x, y).