King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 445 Major Exam I The Second Semester of 2021-2022 (212)

Time Allowed: 90 Minutes

Name:	ID#:
Section/Instructor:	Serial #:

- Mobiles and calculators are not allowed in this exam.
- Provide all necessary steps required in the solution.
- Attempt all questions to the point.

Question #	Marks	Maximum Marks
1		5 + 5 = 10
2		4 + 3 = 7
3		9 + 6 = 15
4		4 + 4 + 4 = 12
5		4 + 4 + 4 + 4 = 16
Total		60

Full Exam paper

- 1. (a) Draw the hexagon inscribed in a unit circle whose vertices represent the complex numbers z such that $z^6 = 1$.
 - (b) Evaluate $(-\sqrt{3} i)^{29}$.
- 2. (a) Define domain and region in the complex plane.
 - (b) Is the set $3 \le |z| < 11$ a domain or region or both? Give reason.
- 3. (a) Let f(z) = z + 1, $g(z) = e^{i\frac{\pi}{4}}z$ and h(z) = 2z then sketch the image of the unit semi-disk $|z| \le 1$, Im (z) > 0 under the following maps.
 - i. h(z)
 - ii. g(h(z))
 - iii. f(g(h(z)))
 - (b) By using $\epsilon \delta$ definition of limit show that $\lim_{z \to i} (2z + 1) = 1 + 2i$ by finding δ in terms of ϵ .
- 4. Determine the points where the following functions are differentiable and analytic.
 - (a) $f(z) = \overline{z}$
 - (b) $f(z) = (3x^2 + y + 3) + i(y^2 x)$
 - (c) $f(z) = (3x^2 + 2x 3y^2 1) + i(6xy + 2y)$
- 5. Write down T for a true and F for a false statement by supporting your answer with appropriate reason.
 - (a) Let f be an analytic function on $D := \{|z| < 1\} \cup \{|z| > 1\}$ such that f'(z) = 0. Then f is constant on D.
 - (b) The function $u(x,y) = e^{-x} \sin y$ can be real part of some analytic function.
 - (c) $f(z) = \frac{|z| + z}{2}$ is analytic at the origin.
 - (d) Let f(z) = 3 + iv(x, y) be an analytic function then v(x, y) must be constant.
 - (e) The curves $3x^2 + 2x 3y^2 1 = c_1$ and $6xy + 2y = c_2$ are level curves for arbitrary constant c_1 and c_2 .