MATH 445 (TERM 231) MIDTERM

CAUTION: Write down your answers as clear as possible.

1. Find the principal value of

$$
\left[\frac{e}{2}(-1-\sqrt{3} i)\right]^{3 \pi i}
$$

2. Describe the image of $\{z \in \mathbb{C}:|z|=1\}$ by the map

$$
w=\frac{4(z+1)}{3+z}
$$

3. Prove that a analytic function f on a domain D is a constant of $(\operatorname{Re} f)^{2}-(\operatorname{Im} f)^{2} \equiv 1$.
4. Prove that

$$
u(x, y)=\ln \left(4 x^{2}+4 y^{2}+4 x+1\right)+x^{2}-y^{2}
$$

is harmonic and find its harmonic conjugate
5. Find all values of

$$
(-\sqrt{3}+i)^{-1 / 3}
$$

6. Let $H=\{z \in \mathbb{C}: \operatorname{Im}>0\}$ be the upper half plane.
(a) Prove that if $z \notin H$ and $w \in H$, then $\frac{1}{z-w} \in H$.
(b) Let $P(z)$ be a polynomial of degree $k \geq 2$. Prove that if all the zeros of P lie on H, then so are zeros of P^{\prime}. (Hint. Let $z_{1}, \ldots, z_{k} \in H$ be zeros of P. Using the formula for $P^{\prime}(z) / P(z)$, derive a contradiction if there is a zero z_{0} of P^{\prime} which does not lie on H from $P^{\prime}\left(z_{0}\right) / P\left(z_{0}\right)=0$,)
