King Fahd University of Petroleum and Minerals Department of Mathematics MATH445 - Introduction to Complex Variables Major I Exam – Semester 241

Prove that if  $z \neq 1$ , then

$$1+z+z^2+\cdots+z^n=\frac{z^{n+1}-1}{z-1}.$$

Use this result and De Moivre's formula to establish the following identities for  $\theta \in (0, 2\pi)$ :

(a) 
$$1 + \cos \theta + \cos 2\theta + \dots + \cos n\theta = \frac{1}{2} + \frac{\sin \left(n + \frac{1}{2}\right)\theta}{2\sin \left(\frac{\theta}{2}\right)}$$
,

(b) 
$$\sin \theta + \sin 2\theta + \dots + \sin n\theta = \frac{\sin(\frac{n\theta}{2})\sin((n+1)\frac{\theta}{2})}{\sin(\frac{\theta}{2})}$$
,

- 1. Find all values of  $(1 \sqrt{3}i)^{\frac{1}{3}}$ 2. Solve the equation  $(z+1)^5 = z^5$ .

A real-valued function u(x,y) satisfies

$$\frac{\partial u}{\partial x} = \frac{2x}{x^2 + y^2}$$
 and  $\frac{\partial u}{\partial y} = \frac{2y}{x^2 + y^2}$ 

at every point in the annulus  $A = \{z : 1 < |z| < 3\}$ . Determine u(x,y) up to an additive constant.

Prove that  $u(x,y) = x^3 - 3xy^2 + y$  is harmonic and find its harmonic conjugate. Find an analytic function such that  $\Re(f) = u$ .

Let 
$$f(z) = e^z$$
.

- (a) Describe the domain of definition and the range.
- (b) Describe the image of the vertical line Re z=1.
- (c) Describe the image of the horizontal line Im  $z = \frac{\pi}{4}$ .
- (d) Describe the image of the infinite strip  $0 \le \text{Im } z \le \frac{\pi}{4}$ .

Let 
$$f(z)=u(x,y)+iv(x,y)$$
, where  $z_0=x_0+iy_0$  and  $w_0=u_0+iv_0$ . Prove that 
$$\lim_{z\to z_0}f(z)=w_0$$

if, and only if,

$$\lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0 \quad \text{and} \quad \lim_{(x,y)\to(x_0,y_0)} v(x,y) = v_0.$$