KFUPM-DEPARTMENT OF MATHEMATICS-MATH 453-EXAM I-TERM 231

MATH 453: EXAM I, TERM (231), OCTOBER 11, 2023

EXAM I- MATH 453 Duration: 150 mn

Student Name:

ID:

Exercise 1. Let *X* be a set and *CC* be the set of all $V \subseteq X$ such that either $V = \emptyset$ or $X \setminus V$ is countable.

- (1) Show that *CC* is a topology on *X* (called the countable complement topology or the co-countable topology).
- (2) If we let *CF* be the co-finite topology on *X*, then show that *CC* is finer than *CF*.
- (3) Show that if *X* is infinite, then CC is strictly finer than CF.
- (4) Show that the following statements are equivalent.
 - (i) $\mathcal{CC} = \mathcal{CF}$.
 - (ii) X is finite.
 - (iii) CF is discrete.

Solution. 1. By definition of CC, $\emptyset \in CC$. Also, as $X = X \setminus \emptyset$ and \emptyset is countable, we deduce that $X \in CC$.

- Let $U, V \in CC$. If $U \cap V = \emptyset$, then $U \cap V \in CC$. If we suppose that $U \cap V \neq \emptyset$, then $X = X \setminus U$ and $X = X \setminus V$ are countable. Hence $(X \setminus U) \cup (X \setminus V)$ is countable. So, by De Morgan's Law, $X \setminus (U \cap V)$ is countable. It follows that $U \cap V \in CC$.

- Let $(U_i, i \in I)$ be an indexed family of elements of CC. One may assume that $U_i \neq \emptyset$, for all $i \in I$ (as $\cup [U_i : i \in I] = \cup [U_i : i \in I \text{ and } U_i \neq \emptyset]$. As $X \setminus U_i$ is countable, for each $i \in I$, we deduce that $\bigcap_{i \in I} (X \setminus U_i)$ is countable. So, again, by

De Morgan's Law, $X \setminus \left(\bigcup_{i \in I} U_i\right)$ is countable. We deduce that $\bigcup_{i \in I} U_i$ is in \mathcal{CC} .

As a result, CC is a topology on X.

2. Let $O \in C\mathcal{F}$. If $O = \emptyset$, then $O \in C\mathcal{C}$.

Now, if we assume $O \neq \emptyset$, then $X \setminus O$ is finite, so it is countable. It follows that $O \in CC$. This shows that CC is finer than CF.

3. Assume *X* is infinite; then there exists an infinite sequence $\{x_n : n \in \mathbb{N}\}$ $(x_n \neq x_m, \text{ for } m \neq n)$ of elements of *X*. The set $O = X \setminus \{x_{2n} : n \in \mathbb{N}\}$ is cocountable, but not co-finite. Hence $O \in CC$ and $O \notin CF$.

4. $(i) \implies (ii)$. Suppose that X is infinite, and let $A \neq X$ be a countably infinite subset of X. Then A is CC-closed, so it is CF-closed. This implies that A is finite, a contradiction. As a result, X is finite.

 $(ii) \implies (iii)$. If *X* is finite, then for each $A \subseteq X$, X - A is finite, and consequently *A* is *CF*-open. Thus *CF* is discrete.

 $(iii) \Longrightarrow (i)$. Assume CF is discrete. So, as

$$\mathfrak{D} = \mathcal{CF} \subseteq \mathcal{CC} \subseteq \mathfrak{D},$$

we deduce that $\mathfrak{D} = \mathcal{CF} = \mathcal{CC}$.

Exercise 2. Let (X, \mathcal{T}) be a T_1 -second countable topological space such that $|X| = 2^{\aleph_0}$. Show that $|\mathcal{T}| = 2^{\aleph_0}$.

Solution. Since *X* is a T_1 -space $\{x\}$ is a closed set for every $x \in X$. The function

$$\begin{array}{cccc} X & \longrightarrow & \mathcal{T} \\ x & \longmapsto & X \setminus \{x\} \end{array}$$

is obviously one-to-one, so $|X| = 2^{\aleph_0} \le |\mathcal{T}|$.

Now, as *X* is second countable, it has a countable basis \mathcal{B} (that is $|\mathcal{B}| \leq \aleph_0$).

Note that, if (X, \mathcal{T}) is a topological space and \mathcal{B} is a basis of \mathcal{T} , then $|\mathcal{T}| \leq 2^{|\mathcal{B}|}$. Indeed, the function

$$\begin{array}{ccc} \mathcal{P}(\mathcal{B}) & \longrightarrow & \mathcal{T} \\ \Gamma & \longmapsto & \cup [O:O \in \Gamma] \end{array}$$

is onto. So $|\mathcal{T}| \leq |\mathcal{P}(\mathcal{B})| = 2^{|\mathcal{B}|}$.

We deduce that $|\mathcal{T}| \leq 2^{|\mathcal{B}|} \leq 2^{\aleph_0}$. Therefore $|\mathcal{T}| = 2^{\aleph_0}$.

Exercise 3. Let *X*, *Y* be topological spaces and $A \subseteq X, B \subseteq Y$. Show that:

- (1) $\overline{A \times B} = \overline{A} \times \overline{B}$. (2) $\operatorname{Int} (A \times B) = \operatorname{Int}(A) \times \operatorname{Int}(B)$.
- (3) $(A \times B)' = (A' \times \overline{B}) \cup (\overline{A} \times B').$
- (4) $\operatorname{Fr}(A \times B) = (\operatorname{Fr}(A) \times \overline{B}) \cup (\overline{A} \times \operatorname{Fr}(B)).$

Solution. We denote by the complement of a subset A of a set X by A^c .

(1) Let $(x, y) \in X \times Y$, then the following equivalences hold:

$$(x,y) \notin \overline{A} \times \overline{B} \iff x \notin \overline{A} \text{ or } x \notin \overline{B}$$
$$\iff ((x,y) \in (\overline{A})^c \times Y) \text{ or } ((x,y) \in (X \times \overline{B})^c)$$
$$\iff (x,y) \in ((\overline{A})^c \times Y) \cup (X \times (\overline{B})^c)$$

It follows that $(\overline{A} \times \overline{B})^c = (X \times \overline{B}^c) \cup (\overline{A}^c \times Y)$ is open in the product topology. Consequently, $\overline{A} \times \overline{B}$ is a closed set containing $A \times B$. Thus, $\overline{A \times B} \subseteq \overline{A} \times \overline{B}$.

Conversely, let $(x, y) \in \overline{A} \times \overline{B}$ and $U \times V$ be a basic open set of $X \times Y$, containing (x, y); then $U \cap A \neq \emptyset$ and $V \cap B \neq \emptyset$; hence $(U \times V) \cap (A \times B) \neq \emptyset$. This hows that $(x, y) \in \overline{A \times B}$.

As a result, $\overline{A \times B} = \overline{A} \times \overline{B}$.

(2) As $Int(A) \subseteq A$ and $Int(B) \subseteq B$, we deduce that $Int(A) \times Int(B) \subseteq A \times B$. Since $Int(A \times B)$ is the largest open set contained in $A \times B$, we deduce that $Int(A) \times Int(B) \subseteq Int(A \times B)$. Conversely, if $(x, y) \in Int(A \times B)$, then there exist an open set U of X and an open set V of Y, with $(x, y) \in U \times V \subseteq A \times B$. This So $x \in U \subseteq A$ and $y \in V \subseteq B$ Therefore $x \in Int(A)$ and $y \in Int(B)$.

As a result, we obtain the equality $Int (A \times B) = Int(A) \times Int(B)$.

_____3

(3) First, let us remark that if *S* is a subset of a topological space *E*, then $\overline{S} = A \cup S'$, and consequently $S' \subseteq \overline{S}$.

Let $(x, y) \in (A \times B)' \subseteq \overline{A \times B} = \overline{A} \times \overline{B}$.

Suppose that $x \notin A'$ and $y \notin B'$; then there exist an open set U of X and an open set V of Y, such that $U \cap (A - \{x\}) = \emptyset$ and $V \cap (B - \{y\}) = \emptyset$. So $(U \times V) \cap [(A \times B) - \{(x, y)\}] = \emptyset$, this contradicts the fact that $(x, y) \in (A \times B)'$.

We conclude that either $x \in A'$ or $y \in B'$, that is either $(x, y) \in A' \times \overline{B}$ or $(x, y) \in \overline{A} \times B'$. Therefore

$$(A \times B)' \subseteq (A' \times \overline{B}) \cup (\overline{A} \times B').$$

For the reverse containment, let $(x, y) \in A' \times \overline{B}$, and $(x, y) \in O$ be an open set of $X \times Y$. So, there exist an open set U of X and an open set V of Y, with

$$(x,y) \in U \times V \subseteq O.$$

As $x \in A'$, we deduce that $U \cap (A - \{x\}) \neq \emptyset$. Again, as $y \in \overline{B}$ and $y \in V$, we have $V \cap B \neq \emptyset$. Thus picking $z \in U \cap (A - \{x\})$ and $t \in V \cap B$, we obtain

$$(z,t) \in (U \times V) \cap \left[(A \times B) - \{(x,y)\} \right].$$

It follows that $O \cap ((A \times B) - \{(x, y)\}) \neq \emptyset$, showing that $(x, y) \in (A \times B)'$. An analogous argument shows that if $(x, y) \in \overline{A} \times B'$, then $(x, y) \in (A \times B)'$.

As a result, we obtain the equality:

$$(A \times B)' = (A' \times \overline{B}) \cup (\overline{A} \times B').$$

(4)

$$\begin{aligned} \operatorname{Fr}(A \times B) &= \overline{A \times B} \cap \overline{(A \times B)^c} \\ &= (\overline{A} \times \overline{B}) \cap \overline{(X \times B^c) \cup (A^c \times Y)} \\ &= (\overline{A} \times \overline{B}) \cap \left(\overline{X \times B^c} \cup \overline{A^c} \times \overline{Y} \right) \\ &= (\overline{A} \times \overline{B}) \cap \left((X \times \overline{B^c}) \cup (\overline{A^c} \times Y) \right) \\ &= \left[(\overline{A} \times \overline{B}) \cap (X \times \overline{B^c}) \right] \cup \left[(\overline{A} \times \overline{B}) \cap (\overline{A^c} \times Y) \right] \\ &= \left[(\overline{A} \cap X) \times (\overline{B} \cap \overline{B^c}) \right] \cup \left[(\overline{A} \cap \overline{A^c}) \times (\overline{B} \cap Y) \right] \\ &= (\overline{A} \times \operatorname{Fr}(B)) \cup (\operatorname{Fr}(A) \times \overline{B}). \end{aligned}$$

5

Exercise 4. Let (X, d) be a metric space, $x \in X$ and r be a positive integer. Show that the following properties hold.

- (1) The closed ball $\overline{B}_d(x, r) := \{y \in X : d(x, y) \le r\}$ is a closed set of $(X, \mathcal{T}(d))$.
- (2) $\overline{B_d(x,r)} \subseteq \overline{B}_d(x,r).$
- (3) The above containment can be strict.

Solution.

- (1) We will show that $O = X \setminus \overline{B}_d(x,r) = \{y \in X : d(x,y) > r\}$ is $\mathcal{T}(d)$)open. Indeed, let $y \in O$, then d(x,y) > r. We claim that $B_d(y,\varepsilon) \subseteq O$, for $\varepsilon \leq d(x,y) - r$. To show this, Let $z \in B_d(y,\varepsilon)$. Then $d(z,y) < \varepsilon \leq d(x,y) - r$; that is r < d(x,y) - d(z,y). But, according to the triangle inequality, we have $d(x,y) - d(z,y) \leq d(x,z)$. This leads to r < d(x,z). It follows that $z \in O$, and consequently $B_d(y,\varepsilon) \subseteq O$. Therefore, O is $\mathcal{T}(d)$)-open.
- (2) As $\overline{B}_d(x,r)$ is a $\mathcal{T}(d)$)-closed set containing $B_d(x,r)$, we conclude that $\overline{B_d(x,r)} \subseteq \overline{B}_d(x,r)$.
- (3) Assume *X* is a set containing more than 1 element. We equip *X* with the discrete distance δ . Let $x \in X$. Then, $B_d(x, 1) = \{x\}$ and $\overline{B_d(x, 1)} = \overline{\{x\}} = \{x\}$, but $\overline{B}_d(x, 1) = X$. As a result $\overline{B_d(x, r)} \neq \overline{B}_d(x, r)$.

Exercise 5. The set \mathbb{R}^n is equipped with the usual topology \mathfrak{U}_n . For $x \in \mathbb{R}^n$ and r > 0, we denote by $B(x, r) : \{y \in \mathbb{R}^n : ||x-y|| < r\}, \overline{B}(x, r) : \{y \in \mathbb{R}^n : ||x-y|| \le r\}$ and $S(x, r) : \{y \in \mathbb{R}^n : ||x-y|| = r\}$, where ||.|| is the Euclidean norm. Show that the following properties hold.

- (1) $\overline{B(x,r)} = \overline{B}(x,r).$
- (2) $\operatorname{Int}(\overline{B}(x,r)) = B(x,r).$
- (3) Fr(B(x,r)) = S(x,r).

Solution. Straightforward.

Exercise 6. Find the interior and topological closure of each of the following subsets o the spaces $(\mathbb{R}^n, \mathfrak{U}_n)$.

(1) \mathbb{Q} (2) $\mathbb{R} \setminus \mathbb{Q}$ (3) $\{(x, y) \in \mathbb{R}^2 : 0 < x < 1, y = 0\}$ (4) $\{\frac{1}{n} : n \in \mathbb{N}\}$ (5) The unit circle of \mathbb{R}^2 : $S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$

Solution. Straightforward.

- (1),(2) $\overline{\mathbb{R} \setminus \mathbb{Q}} = \overline{\mathbb{Q}} = \mathbb{R}$, $Int(\mathbb{Q}) = Int(\mathbb{R} \setminus \mathbb{Q})\emptyset$.
 - (3) As $A = \{(x,y) \in \mathbb{R}^2 : 0 < x < 1, y = 0\} = (0,1) \times \{0\}$, we have $\overline{A} = \overline{(0,1)} \times \overline{\{0\}} = [0,1] \times \{0\}$. However $\operatorname{Int}(A) = \operatorname{Int}((0,1)) \times \operatorname{Int}(\{0\}) = \operatorname{Int}((0,1)) \times \emptyset = \emptyset$.
 - (4) If $A = \{\frac{1}{n} : n \in \mathbb{N}\}$, the $\overline{A} = A \cup \{0\}$ and $Int(A) = \emptyset$.
 - (5) $\operatorname{Int}(S^1) = \emptyset, \overline{S^1} = S^1.$