EXAM I- MATH 453
Duration: $\mathbf{1 5 0 ~ m n}$

Student Name:

ID:

Exercise 1. Let X be a set and $\mathcal{C C}$ be the set of all $V \subseteq X$ such that either $V=\emptyset$ or $X \backslash V$ is countable.
(1) Show that $\mathcal{C C}$ is a topology on X (called the countable complement topology or the co-countable topology).
(2) If we let $\mathcal{C F}$ be the co-finite topology on X, then show that $\mathcal{C C}$ is finer than $\mathcal{C} \mathcal{F}$.
(3) Show that if X is infinite, then $\mathcal{C C}$ is strictly finer than $\mathcal{C F}$.
(4) Show that the following statements are equivalent.
(i) $\mathcal{C C}=\mathcal{C} \mathcal{F}$.
(ii) X is finite.
(iii) $\mathcal{C F}$ is discrete.

Solution. 1. By definition of $\mathcal{C C}, \emptyset \in \mathcal{C C}$. Also, as $X=X \backslash \emptyset$ and \emptyset is countable, we deduce that $X \in \mathcal{C C}$.

- Let $U, V \in \mathcal{C C}$. If $U \cap V=\emptyset$, then $U \cap V \in \mathcal{C C}$. If we suppose that $U \cap V \neq \emptyset$, then $X=X \backslash U$ and $X=X \backslash V$ are countable. Hence $(X \backslash U) \cup(X \backslash V)$ is countable. So, by De Morgan's Law, $X \backslash(U \cap V)$ is countable. It follows that $U \cap V \in \mathcal{C C}$.
- Let $\left(U_{i}, i \in I\right)$ be an indexed family of elements of $\mathcal{C C}$. One may assume that $U_{i} \neq \emptyset$, for all $i \in I$ (as $\cup\left[U_{i}: i \in I\right]=\cup\left[U_{i}: i \in I\right.$ and $\left.U_{i} \neq \emptyset\right]$. As $X \backslash U_{i}$ is countable, for each $i \in I$, we deduce that $\bigcap_{i \in I}\left(X \backslash U_{i}\right)$ is countable. So, again, by De Morgan's Law, $X \backslash\left(\bigcup_{i \in I} U_{i}\right)$ is countable. We deduce that $\bigcup_{i \in I} U_{i}$ is in $\mathcal{C C}$.

As a result, $\mathcal{C C}$ is a topology on X.
2. Let $O \in \mathcal{C \mathcal { F }}$. If $O=\emptyset$, then $O \in \mathcal{C C}$.

Now, if we assume $O \neq \emptyset$, then $X \backslash O$ is finite, so it is countable. It follows that $O \in \mathcal{C C}$. This shows that $\mathcal{C C}$ is finer than $\mathcal{C F}$.
3. Assume X is infinite; then there exists an infinite sequence $\left\{x_{n}: n \in \mathbb{N}\right\}\left(x_{n} \neq\right.$ x_{m}, for $\mathrm{m} \neq n$) of elements of X. The set $O=X \backslash\left\{x_{2 n}: n \in \mathbb{N}\right\}$ is cocountable, but not co-finite. Hence $O \in \mathcal{C C}$ and $O \notin \mathcal{C F}$.
4. $(i) \Longrightarrow(i i)$. Suppose that X is infinite, and let $A \neq X$ be a countably infinite subset of X. Then A is $\mathcal{C C}$-closed, so it is $\mathcal{C F}$-closed. This implies that A is finite, a contradiction. As a result, X is finite.
$(i i) \Longrightarrow(i i i)$. If X is finite, then for each $A \subseteq X, X-A$ is finite, and consequently A is $\mathcal{C \mathcal { F }}$-open. Thus $\mathcal{C \mathcal { F }}$ is discrete.
(iii) $\Longrightarrow(i)$. Assume $\mathcal{C F}$ is discrete. So, as

$$
\mathfrak{D}=\mathcal{C F} \subseteq \mathcal{C C} \subseteq \mathfrak{D},
$$

we deduce that $\mathfrak{D}=\mathcal{C F}=\mathcal{C C}$.
Exercise 2. Let (X, \mathcal{T}) be a T_{1}-second countable topological space such that $|X|=$ $2^{\aleph_{0}}$. Show that $|\mathcal{T}|=2^{\aleph_{0}}$.

Solution. Since X is a T_{1}-space $\{x\}$ is a closed set for every $x \in X$. The function

$$
\begin{array}{lll}
X & \longrightarrow & \mathcal{T} \\
x & \longmapsto & X \backslash\{x\}
\end{array}
$$

is obviously one-to-one, so $|X|=2^{\aleph_{0}} \leq|\mathcal{T}|$.
Now, as X is second countable, it has a countable basis \mathcal{B} (that is $|\mathcal{B}| \leq \aleph_{0}$).
Note that, if (X, \mathcal{T}) is a topological space and \mathcal{B} is a basis of \mathcal{T}, then $|\mathcal{T}| \leq 2^{|\mathcal{B}|}$. Indeed, the function

$$
\begin{array}{ll}
\mathcal{P}(\mathcal{B}) & \longrightarrow \mathcal{T} \\
\Gamma & \longmapsto \cup[O: O \in \Gamma]
\end{array}
$$

is onto. So $|\mathcal{T}| \leq|\mathcal{P}(\mathcal{B})|=2^{|\mathcal{B}|}$.
We deduce that $|\mathcal{T}| \leq 2^{|\mathcal{B}|} \leq 2^{\aleph_{0}}$. Therefore $|\mathcal{T}|=2^{\aleph_{0}}$.
Exercise 3. Let X, Y be topological spaces and $A \subseteq X, B \subseteq Y$. Show that:
(1) $\overline{A \times B}=\bar{A} \times \bar{B}$.
(2) $\operatorname{Int}(A \times B)=\operatorname{Int}(A) \times \operatorname{Int}(B)$.
(3) $(A \times B)^{\prime}=\left(A^{\prime} \times \bar{B}\right) \cup\left(\bar{A} \times B^{\prime}\right)$.
(4) $\operatorname{Fr}(A \times B)=(\operatorname{Fr}(A) \times \bar{B}) \cup(\bar{A} \times \operatorname{Fr}(B))$.

Solution. We denote by the complement of a subset A of a set X by A^{c}.
(1) Let $(x, y) \in X \times Y$, then the following equivalences hold:

$$
\begin{aligned}
(x, y) \notin \bar{A} \times \bar{B} & \Longleftrightarrow x \notin \bar{A} \text { or } x \notin \bar{B} \\
& \Longleftrightarrow\left((x, y) \in(\bar{A})^{c} \times Y\right) \text { or }\left((x, y) \in(X \times \bar{B})^{c}\right) \\
& \Longleftrightarrow(x, y) \in\left((\bar{A})^{c} \times Y\right) \cup\left(X \times(\bar{B})^{c}\right)
\end{aligned}
$$

It follows that $(\bar{A} \times \bar{B})^{c}=\left(X \times \bar{B}^{c}\right) \cup\left(\bar{A}^{c} \times Y\right)$ is open in the product topology. Consequently, $\bar{A} \times \bar{B}$ is a closed set containing $A \times B$. Thus, $\overline{A \times B} \subseteq \bar{A} \times \bar{B}$.

Conversely, let $(x, y) \in \bar{A} \times \bar{B}$ and $U \times V$ be a basic open set of $X \times Y$, containing (x, y); then $U \cap A \neq \emptyset$ and $V \cap B \neq \emptyset$; hence $(U \times V) \cap(A \times B) \neq \emptyset$. This hows that $(x, y) \in \overline{A \times B}$.

As a result, $\overline{A \times B}=\bar{A} \times \bar{B}$.
(2) As $\operatorname{Int}(A) \subseteq A$ and $\operatorname{Int}(B) \subseteq B$, we deduce that $\operatorname{Int}(A) \times \operatorname{Int}(B) \subseteq A \times B$. Since $\operatorname{Int}(A \times B)$ is the largest open set contained in $A \times B$, we deduce that $\operatorname{Int}(A) \times \operatorname{Int}(B) \subseteq \operatorname{Int}(A \times B)$. Conversely, if $(x, y) \in \operatorname{Int}(A \times B)$, then there exist an open set U of X and an open set V of Y, with $(x, y) \in U \times V \subseteq$ $A \times B$. This So $x \in U \subseteq A$ and $y \in V \subseteq B$ Therefore $x \in \operatorname{Int}(A)$ and $y \in \operatorname{Int}(B)$.

As a result, we obtain the equality $\operatorname{Int}(A \times B)=\operatorname{Int}(A) \times \operatorname{Int}(B)$.
(3) First, let us remark that if S is a subset of a topological space E, then $\bar{S}=$ $A \cup S^{\prime}$, and consequently $S^{\prime} \subseteq \bar{S}$.

Let $(x, y) \in(A \times B)^{\prime} \subseteq \overline{A \times B}=\bar{A} \times \bar{B}$.
Suppose that $x \notin A^{\prime}$ and $y \notin B^{\prime}$; then there exist an open set U of X and an open set V of Y, such that $U \cap(A-\{x\})=\emptyset$ and $V \cap(B-\{y\})=\emptyset$. So $(U \times V) \cap[(A \times B)-\{(x, y)\}]=\emptyset$, this contradicts the fact that $(x, y) \in$ $(A \times B)^{\prime}$.

We conclude that either $x \in A^{\prime}$ or $y \in B^{\prime}$, that is either $(x, y) \in A^{\prime} \times \bar{B}$ or $(x, y) \in \bar{A} \times B^{\prime}$. Therefore

$$
(A \times B)^{\prime} \subseteq\left(A^{\prime} \times \bar{B}\right) \cup\left(\bar{A} \times B^{\prime}\right)
$$

For the reverse containment, let $(x, y) \in A^{\prime} \times \bar{B}$, and $(x, y) \in O$ be an open set of $X \times Y$. So, there exist an open set U of X and an open set V of Y, with

$$
(x, y) \in U \times V \subseteq O
$$

As $x \in A^{\prime}$, we deduce that $U \cap(A-\{x\}) \neq \emptyset$. Again, as $y \in \bar{B}$ and $y \in V$, we have $V \cap B \neq \emptyset$. Thus picking $z \in U \cap(A-\{x\})$ and $t \in V \cap B$, we obtain

$$
(z, t) \in(U \times V) \cap[(A \times B)-\{(x, y)\}] .
$$

It follows that $O \cap((A \times B)-\{(x, y)\}) \neq \emptyset$, showing that $(x, y) \in(A \times B)^{\prime}$.
An analogous argument shows that if $(x, y) \in \bar{A} \times B^{\prime}$, then $(x, y) \in$ $(A \times B)^{\prime}$.

As a result, we obtain the equality:

$$
(A \times B)^{\prime}=\left(A^{\prime} \times \bar{B}\right) \cup\left(\bar{A} \times B^{\prime}\right)
$$

$$
\begin{align*}
\operatorname{Fr}(A \times B) & =\overline{A \times B} \cap \overline{(A \times B)^{c}} \tag{4}\\
& =(\bar{A} \times \bar{B}) \cap \overline{\left(X \times B^{c}\right) \cup\left(A^{c} \times Y\right)} \\
& =(\bar{A} \times \bar{B}) \cap\left(\overline{X \times B^{c}} \cup \overline{A^{c} \times Y}\right) \\
& =(\bar{A} \times \bar{B}) \cap\left(\left(X \times \overline{B^{c}}\right) \cup\left(\overline{A^{c}} \times Y\right)\right) \\
& =\left[(\bar{A} \times \bar{B}) \cap\left(X \times \overline{B^{c}}\right)\right] \cup\left[(\bar{A} \times \bar{B}) \cap\left(\overline{A^{c}} \times Y\right)\right] \\
& =\left[(\bar{A} \cap X) \times\left(\bar{B} \cap \overline{B^{c}}\right)\right] \cup\left[\left(\bar{A} \cap \overline{A^{c}}\right) \times(\bar{B} \cap Y)\right] \\
& =(\bar{A} \times \operatorname{Fr}(B)) \cup(\operatorname{Fr}(A) \times \bar{B}) .
\end{align*}
$$

Exercise 4. Let (X, d) be a metric space, $x \in X$ and r be a positive integer. Show that the following properties hold.
(1) The closed ball $\bar{B}_{d}(x, r):=\{y \in X: d(x, y) \leq r\}$ is a closed set of $(X, \mathcal{T}(d))$.
(2) $\overline{B_{d}(x, r)} \subseteq \bar{B}_{d}(x, r)$.
(3) The above containment can be strict.

Solution.

(1) We will show that $O=X \backslash \bar{B}_{d}(x, r)=\{y \in X: d(x, y)>r\}$ is $\left.\mathcal{T}(d)\right)$ open. Indeed, let $y \in O$, then $d(x, y)>r$. We claim that $B_{d}(y, \varepsilon) \subseteq O$, for $\varepsilon \leq d(x, y)-r$.
To show this, Let $z \in B_{d}(y, \varepsilon)$. Then $d(z, y)<\varepsilon \leq d(x, y)-r$; that is $r<d(x, y)-d(z, y)$. But, according to the triangle inequality, we have $d(x, y)-d(z, y) \leq d(x, z)$. This leads to $r<d(x, z)$. It follows that $z \in O$, and consequently $B_{d}(y, \varepsilon) \subseteq O$. Therefore, O is $\left.\mathcal{T}(d)\right)$-open.
(2) As $\bar{B}_{d}(x, r)$ is a $\left.\mathcal{T}(d)\right)$-closed set containing $B_{d}(x, r)$, we conclude that $\overline{B_{d}(x, r)} \subseteq$ $\bar{B}_{d}(x, r)$.
(3) Assume X is a set containing more than 1 element. We equip X with the discrete distance δ. Let $x \in X$. Then, $B_{d}(x, 1)=\{x\}$ and $\overline{B_{d}(x, 1)}=\overline{\{x\}}=$ $\{x\}$, but $\bar{B}_{d}(x, 1)=X$. As a result $\overline{B_{d}(x, r)} \neq \bar{B}_{d}(x, r)$.

Exercise 5. The set \mathbb{R}^{n} is equipped with the usual topology \mathfrak{U}_{n}. For $x \in \mathbb{R}^{n}$ and $r>0$, we denote by $B(x, r):\left\{y \in \mathbb{R}^{n}:\|x-y\|<r\right\}, \bar{B}(x, r):\left\{y \in \mathbb{R}^{n}:\|x-y\| \leq r\right\}$ and $S(x, r):\left\{y \in \mathbb{R}^{n}:\|x-y\|=r\right\}$, where $\|\cdot\|$ is the Euclidean norm. Show that the following properties hold.
(1) $\overline{B(x, r)}=\bar{B}(x, r)$.
(2) $\operatorname{Int}(\bar{B}(x, r))=B(x, r)$.
(3) $\operatorname{Fr}(B(x, r))=S(x, r)$.

Solution. Straightforward.

Exercise 6. Find the interior and topological closure of each of the following subsets o the spaces $\left(\mathbb{R}^{n}, \mathfrak{U}_{n}\right)$.
(1) \mathbb{Q}
(2) $\mathbb{R} \backslash \mathbb{Q}$
(3) $\left\{(x, y) \in \mathbb{R}^{2}: 0<x<1, y=0\right\}$
(4) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$
(5) The unit circle of $\mathbb{R}^{2}: S^{1}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$.

Solution. Straightforward.
$(1),(2) \overline{\mathbb{R}} \backslash \mathbb{Q}=\overline{\mathbb{Q}}=\mathbb{R}, \operatorname{Int}(\mathbb{Q})=\operatorname{Int}(\mathbb{R} \backslash \mathbb{Q}) \emptyset$.
(3) As $A=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<1, y=0\right\}=(0,1) \times\{0\}$, we have $\bar{A}=$ $\overline{(0,1)} \times \overline{\{0\}}=[0,1] \times\{0\}$. However $\operatorname{Int}(A)=\operatorname{Int}((0,1)) \times \operatorname{Int}(\{0\})=$ $\operatorname{Int}((0,1)) \times \emptyset=\emptyset$.
(4) If $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$, the $\bar{A}=A \cup\{0\}$ and $\operatorname{Int}(A)=\emptyset$.
(5) $\operatorname{Int}\left(S^{1}\right)=\emptyset, \overline{S^{1}}=S^{1}$.

