EXAM II- MATH 453
Duration: $\mathbf{1 5 0 ~ m n}$

Student Name:

ID:

Exercise 1. Let X be an uncountable set. We equip X with the co-countable topology $\mathcal{C C}$ (the open sets are: $\emptyset, X \backslash C$, with C countable subsets of X), and A be an infinite countable subset of X, show that the following properties hold.
(1) The convergent sequences in $(X, \mathcal{C C})$ are the stationary ones (recall that a sequence $\left(x_{n}\right)$ is said to be stationary if there exists $p \in \mathbb{N}$ such that $x_{n}=x_{p}$, for every $n \geq p$.
(2) $X-A$ is dense in $(X, \mathcal{C C})$.
(3) No element of A is a limit of a sequence of elements of $X-A$.

Solution.

(1) Let O be a nonempty $\mathcal{C C}$-open set of X; then $O=X \backslash C$, where C is a countable subset of X. Assume $O \cap(X-A)=\emptyset$. Then $X=A \cup C$ is countable, a contradiction. We conclude that $X-A$ is $\mathcal{C C}$-dense in X.
(2) Let $\left(x_{n}\right)$ be a sequence of elements of X converging to $\ell \in X$..

Suppose that there for every integer $p \in \mathbb{N}$, there exists $n>p$ such that $x_{n} \neq \ell$. Then there exists an integer $\varphi(1)>1$ such that $x_{\varphi(1)} \neq \ell$. By induction on n, there exist integers $\varphi(n)>\varphi(n-1)>\ldots>\varphi(1)>1$, with $x_{\varphi(n)} \neq \ell$, for every n. But as $X \backslash\left\{x_{\varphi(n)}: n \in \mathbb{N}\right\}$ is an open set containing ℓ and not containing $x_{\varphi(n)}$, for all n, we deduce that $\left(x_{\varphi(n)}, n \in \mathbb{N}\right)$ does not converge to ℓ. This contradicts the fact that a subsequence of a convergent sequence to ℓ converges to ℓ. We conclude that there exists $p \in \mathbb{N}$, such that $x_{n}=\ell$, for all $n \geq p$. Conversely, it is clear that every stationary sequence is convergent.
(3) Let $x \in A$. As $\overline{X-A}=X, x$ is adherent to $X-A$. Any convergent sequence of elements of $X-A$ is stationary. So it converges to an element of $X-A$. Therefore, there is no sequence of elements of $X-A$ that converges to x.

Exercise 2. Let X be a topological space, Y be a Hausdorff space and $f, g: X \rightarrow Y$ be continuous maps. Show that the following properties hold.
(1) $\{x \in X \mid f(x)=g(x)\}$ is a closed set of X.
(2) If D is dense in X and $f_{\left.\right|_{D}}=g_{\left.\right|_{D}}$, then $f=g$.
(3) The graph $\operatorname{Gr}(f):=\{(x, f(x)): x \in X\}$ of $f: X \rightarrow Y$ is a closed set of $X \times Y$.
(4) If f is injective and continuous, then X is Hausdorff.
(5) Give an example of discontinuous function with closed graph.

Proof.
(1) Consider the function $\varphi: X \rightarrow Y \times Y$ defined by $\varphi(x)=(f(x), g(x))$; then as $p \circ \varphi=f$, and $q \circ \varphi=g$; (where p is the first projection and q the second projection), we deduce that φ is continuous.
Now, as \triangle_{Y} is closed and
$C=\{x \in X: f(x)=g(x)\}=\varphi^{-1}\left(\triangle_{Y}\right)$, we deduce that C is closed in X.
(2) $C=\{x \in X: f(x)=g(x)\}$ is a closed set containing D; but as D is dense we deduce that $\bar{C} \supseteq \bar{D}=X$, that $C=X$; therefore $f=g$.
(3) The graph of f is given by $G(f):=\{(x, y) \in X \times Y: y=f(x)\}$.

Let

$$
\begin{array}{lll}
\psi: & X \times Y & \longrightarrow Y \times Y \\
(x, y) & \longmapsto(f(x), y)
\end{array}
$$

Then, as ψ is continuous and $G(f)=\psi^{-1}\left(\triangle_{Y}\right)$, we deduce that $G(f)$ is closed.
(4) Let $x \neq y$ be in X. As f is injective $f(x) \neq f(y)$; so there exist two open sets V_{x}, V_{y} of Y such that.

$$
f(x) \in V_{x}, f(y) \in V_{y} \text { and } V_{x} \cap V_{y}=\phi
$$

Now, since f is continuous, $f^{-1}\left(V_{x}\right), f^{-1}\left(V_{y}\right)$ are disjoint open sets of X containing x and y, respectively. Therefore, X is a T_{2}-space.

An alternative proof. Consider the function $\psi: X \times X \longrightarrow Y \times Y$ defined by $\psi(x, y)=(f(x), f(y))$. Let U, V be open sets of Y. As $\psi^{-1}(U \times V)=$ $f^{-1}(U) \times f^{-1}(V)$ and f is continuous, we deduce that $\psi^{-1}(U \times V)$ is open in $X \times X$. Thus ψ is a continuous function. Now, since f is injective, it is clear that $\psi^{-1}\left(\Delta_{Y}\right)=\Delta_{X}$. Consequently, as Δ_{Y} is closed, we conclude that Δ_{X} is closed. As a result, X is a T_{2}-space

Exercise 3. Let X and Y be topological spaces and $f: X \longrightarrow Y$ be function. Show that the following statements are equivalent.
(1) f is continuous.
(2) For every $B \subseteq Y, f^{-1}(\operatorname{Int}(B)) \subseteq \operatorname{Int}\left(f^{-1}(B)\right)$.
(3) For every $B \subseteq Y, \overline{f^{-1}(B)} \subseteq f^{-1}(\bar{B})$.

Solution. $(i) \Longrightarrow($ ii $)$. The inverse image of an open set by a continuous function is open. So $f^{-1}(\operatorname{Int}(B))$ is an open set contained in $f^{-1}(B)$. Thus $f^{-1}(\operatorname{Int}(B)) \subseteq$ $\operatorname{Int}\left(f^{-1}(B)\right)$.
$(i i) \Longrightarrow(i i i)$. Recall that, by duality, $\bar{B}^{c}=\operatorname{Int}\left(B^{c}\right)$. Hence, applying $(i i)$ to the subset B^{c}, we obtain $f^{-1}\left(\operatorname{Int}\left(B^{c}\right)\right) \subseteq \operatorname{Int}\left(f^{-1}\left(B^{c}\right)\right)$. By duality, we get $f^{-1}\left(\bar{B}^{c}\right) \subseteq$
 This leads to $\overline{f^{-1}(B)} \subseteq f^{-1}(\bar{B})$.
$($ iii $) \Longrightarrow\left(\right.$ i). Let B be a closed set of Y, applying (iii), we have $\overline{f^{-1}(B)} \subseteq$ $f^{-1}(\bar{B})=f^{-1}(B)$. Consequently, $\overline{f^{-1}(B)}=f^{-1}(B)$, this means $f^{-1}(B)$ is a closed set of X. As a result f is continuous.

Exercise 4. Let X be a topological space and R be an equivalence relation on X. Show that the quotient space X / R is a T_{1}-space if and only if \bar{x} is closed in X, for each $x \in X$.

Solution. Let $p: X \longrightarrow X / R$ be the canonical onto map defined by

$$
p(x)=\bar{x}=\{y \in X: x R y\} .
$$

Assume X / R is a T_{1}-space and $x \in X$. As $\{\bar{x}\}$ is closed in X / R and $\bar{x}=p^{-1}(\{\bar{x}\})$, and p is a continuous map, we deduce that \bar{x} is closed in X. Conversely, suppose that \bar{x} is closed in X. Then as $\bar{x}=p^{-1}(\{\bar{x}\})$, we deduce according to the quotient topology, that $\{\bar{x}\}$ is closed in X / R. This shows that X / R is a T_{1}-space.

