KFUPM-DEPARTMENT OF MATHEMATICS-MATH 453-EXAM II-TERM 231

MATH 453: EXAM II, TERM (231), NOVEMBER 15, 2023

EXAM II- MATH 453 Duration: 150 mn

Student Name:

ID:

Exercise 1. Let *X* be an uncountable set. We equip *X* with the co-countable topology CC (the open sets are: $\emptyset, X \setminus C$, with *C* countable subsets of *X*), and *A* be an infinite countable subset of *X*, show that the following properties hold.

- (1) The convergent sequences in (X, CC) are the stationary ones (recall that a sequence (x_n) is said to be stationary if there exists $p \in \mathbb{N}$ such that $x_n = x_p$, for every $n \ge p$.
- (2) X A is dense in (X, CC).
- (3) No element of A is a limit of a sequence of elements of X A.

Solution.

- (1) Let *O* be a nonempty CC-open set of *X*; then $O = X \setminus C$, where *C* is a countable subset of *X*. Assume $O \cap (X A) = \emptyset$. Then $X = A \cup C$ is countable, a contradiction. We conclude that X A is CC-dense in *X*.
- (2) Let (x_n) be a sequence of elements of X converging to $\ell \in X$.. Suppose that there for every integer $p \in \mathbb{N}$, there exists n > p such that $x_n \neq \ell$. Then there exists an integer $\varphi(1) > 1$ such that $x_{\varphi(1)} \neq \ell$. By induction on n, there exist integers $\varphi(n) > \varphi(n-1) > \ldots > \varphi(1) > 1$, with $x_{\varphi(n)} \neq \ell$, for every n. But as $X \setminus \{x_{\varphi(n)} : n \in \mathbb{N}\}$ is an open set containing ℓ and not containing $x_{\varphi(n)}$, for all n, we deduce that $(x_{\varphi(n)}, n \in \mathbb{N})$ does not converge to ℓ . This contradicts the fact that a subsequence of a convergent sequence to ℓ converges to ℓ . We conclude that there exists $p \in \mathbb{N}$, such that $x_n = \ell$, for all $n \ge p$. Conversely, it is clear that every stationary sequence is convergent.
- (3) Let $x \in A$. As $\overline{X A} = X$, x is adherent to X A. Any convergent sequence of elements of X A is stationary. So it converges to an element of X A. Therefore, there is no sequence of elements of X A that converges to x.

Exercise 2. Let *X* be a topological space, *Y* be a Hausdorff space and $f, g: X \to Y$ be continuous maps. Show that the following properties hold.

- (1) $\{x \in X | f(x) = g(x)\}$ is a closed set of *X*.
- (2) If *D* is dense in *X* and $f_{|_D} = g_{|_D}$, then f = g.
- (3) The graph $Gr(f) := \{(x, f(x)) : x \in X\}$ of $f : X \to Y$ is a closed set of $X \times Y$.
- (4) If *f* is injective and continuous, then *X* is Hausdorff.
- (5) Give an example of discontinuous function with closed graph.

- (1) Consider the function $\varphi: X \to Y \times Y$ defined by $\varphi(x) = (f(x), g(x))$; then as $p \circ \varphi = f$, and $q \circ \varphi = g$; (where *p* is the first projection and *q* the second projection), we deduce that φ is continuous. Now, as Δ_Y is closed and
- $C = \{x \in X : f(x) = g(x)\} = \varphi^{-1}(\triangle_Y)$, we deduce that *C* is closed in *X*.
- (2) $C = \{x \in X : f(x) = g(x)\}$ is a closed set containing *D*; but as *D* is dense we deduce that $\overline{C} \supseteq \overline{D} = X$, that C = X; therefore f = g.
- (3) The graph of f is given by G(f): = { $(x, y) \in X \times Y : y = f(x)$ }. Let

$$\begin{array}{ccccc} \psi \colon & X \times Y & \longrightarrow & Y \times Y \\ & (x,y) & \longmapsto & (f(x),y) \end{array}$$

Then, as ψ is continuous and $G(f) = \psi^{-1}(\Delta_Y)$, we deduce that G(f) is closed.

(4) Let $x \neq y$ be in X. As f is injective $f(x) \neq f(y)$; so there exist two open sets V_x, V_y of Y such that.

$$f(x) \in V_x, f(y) \in V_y$$
 and $V_x \cap V_y = \phi$.

Now, since f is continuous, $f^{-1}(V_x)$, $f^{-1}(V_y)$ are disjoint open sets of X containing x and y, respectively. Therefore, X is a T_2 -space.

An alternative proof. Consider the function $\psi: X \times \hat{X} \longrightarrow Y \times Y$ defined by $\psi(x, y) = (f(x), f(y))$. Let U, V be open sets of Y. As $\psi^{-1}(U \times V) = f^{-1}(U) \times f^{-1}(V)$ and f is continuous, we deduce that $\psi^{-1}(U \times V)$ is open in $X \times X$. Thus ψ is a continuous function. Now, since f is injective, it is clear that $\psi^{-1}(\Delta_Y) = \Delta_X$. Consequently, as Δ_Y is closed, we conclude that Δ_X is closed. As a result, X is a T_2 -space

Exercise 3. Let *X* and *Y* be topological spaces and $f: X \longrightarrow Y$ be function. Show that the following statements are equivalent.

- (1) f is continuous.
- (2) For every $B \subseteq Y$, $f^{-1}(Int(B)) \subseteq Int(f^{-1}(B))$.
- (3) For every $B \subseteq Y$, $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$.

Solution. (*i*) \implies (*ii*). The inverse image of an open set by a continuous function is open. So $f^{-1}(\operatorname{Int}(B))$ is an open set contained in $f^{-1}(B)$. Thus $f^{-1}(\operatorname{Int}(B)) \subseteq \operatorname{Int}(f^{-1}(B))$.

 $(ii) \Longrightarrow (iii)$. Recall that, by duality, $\overline{B}^c = Int(B^c)$. Hence, applying (ii) to the subset B^c , we obtain $f^{-1}(Int(B^c)) \subseteq Int(f^{-1}(B^c))$. By duality, we get $f^{-1}(\overline{B}^c) \subseteq \overline{f^{-1}(B)}^c$. But as $f^{-1}(\overline{B}^c) = (f^{-1}(\overline{B}))^c$, we deduce that $(f^{-1}(\overline{B}))^c \subseteq \overline{f^{-1}(B)}^c$. This leads to $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$.

 $(iii) \implies (i)$. Let *B* be a closed set of *Y*, applying (iii), we have $f^{-1}(B) \subseteq f^{-1}(\overline{B}) = f^{-1}(B)$. Consequently, $\overline{f^{-1}(B)} = f^{-1}(B)$, this means $f^{-1}(B)$ is a closed set of *X*. As a result *f* is continuous.

Exercise 4. Let *X* be a topological space and *R* be an equivalence relation on *X*. Show that the quotient space X/R is a T_1 -space if and only if \overline{x} is closed in *X*, for each $x \in X$.

Solution. Let $p: X \longrightarrow X/R$ be the canonical onto map defined by

$$p(x) = \overline{x} = \{ y \in X \colon xRy \}.$$

Assume X/R is a T_1 -space and $x \in X$. As $\{\overline{x}\}$ is closed in X/R and $\overline{x} = p^{-1}(\{\overline{x}\})$, and p is a continuous map, we deduce that \overline{x} is closed in X. Conversely, suppose that \overline{x} is closed in X. Then as $\overline{x} = p^{-1}(\{\overline{x}\})$, we deduce according to the quotient topology, that $\{\overline{x}\}$ is closed in X/R. This shows that X/R is a T_1 -space. \Box