KFUPM-DEPARTMENT OF MATHEMATICS-MATH 453-EXAM I-TERM 232

MATH 453: EXAM II, TERM (232), MARCH 12, 2024

EXAM I- MATH 453 Duration: 120 mn

Student Name:

ID:

Exercise 1. Let X be a set and let $\mathbf{L}_1, \mathbf{L}_2 : \mathcal{P}(X) \to \mathcal{P}(X)$ be operators. Denote by $\mathbf{C} : \mathcal{P}(X) \to \mathcal{P}(X)$ the complement operator. Suppose that $\mathbf{L}_1 = \mathbf{C} \circ \mathbf{L}_2 \circ \mathbf{C}$; that is, $\mathbf{L}_1(A) = X \setminus \mathbf{L}_2(X \setminus A)$ for every $A \in \mathcal{P}(X)$. Prove that the following statements are equivalent:

- (1) For all $A, B \subseteq X$, the following properties hold:
 - (a) $\mathbf{L}_1(\emptyset) = \emptyset$,
 - (b) $A \subseteq \mathbf{L}_1(A)$,

(c) $L_1(L_1(A)) = L_1(A)$,

- (d) $\mathbf{L}_1(A \cup B) = \mathbf{L}_1(A) \cup \mathbf{L}_1(B).$
- (2) For all $A, B \subseteq X$, the following properties hold:
 - (a) $L_2(X) = X$,
 - (b) $\mathbf{L}_2(A) \subseteq A$,
 - (c) $L_2(L_2(A)) = L_2(A)$,
 - (d) $L_2(A \cap B) = L_2(A) \cap L_2(B)$.

For a topological space (X, \mathcal{T}) , with Cl and Int denoting the closure and interior operators respectively, show that $Cl = C \circ Int \circ C$.

Solution. As C is the complement operator, we have that

$$\mathbf{L}_1 = \mathbf{C} \circ \mathbf{L}_2 \circ \mathbf{C} \Longleftrightarrow \mathbf{L}_2 = \mathbf{C} \circ \mathbf{L}_1 \circ \mathbf{C} \Longleftrightarrow \mathbf{C} \circ \mathbf{L}_1 = \mathbf{L}_2 \circ \mathbf{C}.$$

 $(1) \Longrightarrow (2)$:

(1) $\mathbf{L}_2(X) = (\mathbf{C} \circ \mathbf{L}_1 \circ \mathbf{C})(X) = \mathbf{C} \circ \mathbf{L}_1(\emptyset) = \mathbf{C}(\emptyset) = X.$

- (2) For any $A \subseteq X$, since $\mathbf{C}(A) \subseteq \mathbf{L}_1(\mathbf{C}(A)) = (\mathbf{L}_1 \circ \mathbf{C})(A) = (\mathbf{L}_2 \circ \mathbf{C})(A)$, it follows by applying \mathbf{C} again (noting that \mathbf{C} is decreasing) that $\mathbf{C}(\mathbf{L}_2(\mathbf{C}(A))) \subseteq A$, implying $\mathbf{L}_2(A) \subseteq A$.
- (3) By operator composition, $\mathbf{L}_2 \circ \mathbf{L}_2 = (\mathbf{C} \circ \mathbf{L}_1 \circ \mathbf{C}) \circ (\mathbf{C} \circ \mathbf{L}_1 \circ \mathbf{C})$. Given that $\mathbf{C} \circ \mathbf{C} = \mathrm{Id}$, it simplifies to $\mathbf{L}_2 \circ \mathbf{L}_2 = \mathbf{C} \circ \mathbf{L}_1 \circ \mathbf{L}_1 \circ \mathbf{C} = \mathbf{C} \circ \mathbf{L}_1 \circ \mathbf{C} = \mathbf{L}_2$, using $\mathbf{L}_1 \circ \mathbf{L}_1 = \mathbf{L}_1$.
- (4) For the property involving intersections, starting with the complement of $\mathbf{L}_2(A \cap B)$ gives $\mathbf{C}(\mathbf{L}_2(A \cap B)) = \mathbf{L}_1(\mathbf{C}(A \cap B)) = \mathbf{L}_1(\mathbf{C}(A) \cup \mathbf{C}(B)) = \mathbf{L}_1(\mathbf{C}(A)) \cup \mathbf{L}_1(\mathbf{C}(B)) = \mathbf{C}(\mathbf{L}_2(A)) \cup \mathbf{C}(\mathbf{L}_2(B)) = \mathbf{C}(\mathbf{L}_2(A) \cap \mathbf{L}_2(B))$. Applying **C** to both sides yields $\mathbf{L}_2(A \cap B) = \mathbf{L}_2(A) \cap \mathbf{L}_2(B)$.

The implication $(2) \implies (1)$ can be shown by analogous arguments.

For a topological space (X, \mathcal{T}) , with Cl and Int denoting the closure and interior operators respectively, consider any subset $A \subseteq X$. Since $\operatorname{Int}(X - A) \subseteq X - A$, it follows that $A \subseteq X - (\operatorname{Int}(X - A))$. Taking closures, we have $\overline{A} \subseteq X - (\operatorname{Int}(X - A))$. Conversely, since $A \subseteq \overline{A}$, we deduce that $X - \overline{A} \subseteq X - A$ and $X - \overline{A} \subseteq \operatorname{Int}(X - A)$. Therefore, $X - \operatorname{Int}(X - A) \subseteq \overline{A}$. These inclusions prove that $\overline{A} = X - (\operatorname{Int}(X - A))$, which shows that $\operatorname{Cl} = \mathbb{C} \circ \operatorname{Int} \circ \mathbb{C}$.

Exercise 2. Let *d* be the usual metric on \mathbb{R} and $d' = \min(1, d)$. Show that *d* and *d'* are not Lipschitz equivalent.

Solution. Assume, for the sake of contradiction, that *d* and *d'* are Lipschitz equivalent. This means there exist two positive real constants α and β such that for all $x, y \in \mathbb{R}$, we have

$$\alpha d'(x,y) \le d(x,y) \le \beta d'(x,y).$$

Specifically, since $d' = \min(1, d)$, this inequality implies that $d(x, y) \le \beta$, suggesting that d is bounded by β .

However, by the definition of d, for any $\beta > 0$, we can find $x, y \in \mathbb{R}$ such that $d(x, y) > \beta$. For instance, if we choose $x = \beta$ and $y = 3\beta$, then $d(x, y) = |x - y| = 2\beta > \beta$, which contradicts the assumption that $d(x, y) \le \beta d'(x, y)$ for all x, y.

Therefore, d and d' cannot be Lipschitz equivalent.

Exercise 3. Let (X, d) be a metric space, show that for all $x, y, z \in X$, we have:

$$|d(x,z) - d(x,y)| \le d(y,z)$$

Solution.

• By the triangle inequality, we have:

$$d(x,z) \le d(x,y) + d(y,z),$$

so $d(x, z) - d(x, y) \le d(y, z)$.

• Again, using the triangle inequality, we get:

$$d(x,y) \le d(x,z) + d(z,y),$$

which rearranges to $d(x, y) - d(x, z) \le d(y, z)$. We conclude that

$$-d(y,z) \le d(x,z) - d(x,y) \le d(y,z).$$

Therefore,

$$|d(x,z) - d(x,y)| \le d(y,z)$$

Exercise 4. Let d_1, d_2 be two distances on *X*.

(1) Show that $d = d_1 + d_2$ and $d' = \max(d_1, d_2)$ are distances on X.

(2) Show that d and d' are Lipschitz equivalent.

Solution.

- (1) To verify that *d* and *d'* are distances on *X*, we must check that they satisfy the three distance axioms: non-negativity, identity of separation, and the triangle inequality.
 - For d, since both d_1 and d_2 are non-negative for all $x, y \in X$, their sum $d_1(x, y) + d_2(x, y)$ is also non-negative. If x = y, then $d_1(x, y) = d_2(x, y) = 0$, hence d(x, y) = 0. Conversely, if d(x, y) = 0, since d_1 and d_2 are both distances, it follows that x = y. The triangle inequality follows from the triangle inequalities for d_1 and d_2 .

- For *d*', non-negativity and identity of separation follow similarly. The triangle inequality for *d*' uses the fact that max of two values is less than or equal to the sum of the same two values.
- (2) To show that *d* and *d'* are Lipschitz equivalent, observe that for any $x, y \in X$,

$$d' \le d \le 2d'$$

This is because $d' = \max(d_1, d_2) \le d_1 + d_2 = d$ and $d_1 + d_2 \le 2\max(d_1, d_2) = 2d'$. Therefore, for any x, y, it follows that $\frac{1}{2}d(x, y) \le d'(x, y) \le d(x, y)$, establishing the Lipschitz equivalence with Lipschitz constants $\alpha = 1$ and $\beta = 2$.

Exercise 5. Let us define the set

 $\mathfrak{LR} := \{ V \subseteq \mathbb{R} : \forall x \in V, \exists a \in \mathbb{R} \text{ such that } x \in (-\infty, a) \subseteq V \}.$

- (1) Prove that \mathfrak{LR} forms a topology on \mathbb{R} , referred to as the left ray topology.
- (2) Demonstrate that

$$\mathfrak{LR} = \{\emptyset, \mathbb{R}\} \cup \{(-\infty, a) : a \in \mathbb{R}\}.$$

(3) Establish that \mathfrak{LR} is strictly coarser than the standard topology \mathfrak{U} on \mathbb{R} .

Solution.

1. To show LR forms a topology, we verify its properties:

- The empty set Ø and ℝ are in £ℜ, as the conditions are vacuously true for Ø and trivially satisfied for ℝ.
- The intersection of two elements in \mathfrak{LR} remains in \mathfrak{LR} . Given $U, V \in \mathfrak{LR}$ and any $x \in U \cap V$, we find $a, b \in \mathbb{R}$ such that $x \in (-\infty, a) \subseteq U$ and $x \in (-\infty, b) \subseteq V$. Letting $c = \min(a, b)$, it follows $x \in (-\infty, c) \subseteq U \cap V$.
- Arbitrary unions of elements in \mathfrak{LR} also belong to \mathfrak{LR} . For any $(U_i)_{i \in I}$ in \mathfrak{LR} and $x \in \bigcup_{i \in I} U_i$, there exists a $j \in I$ and an $a \in \mathbb{R}$ such that $x \in (-\infty, a) \subseteq U_j$, implying $x \in (-\infty, a) \subseteq \bigcup_{i \in I} U_i$.
- **2.** We show \mathfrak{LR} is exactly $\{\emptyset, \mathbb{R}\} \cup \{(-\infty, a) : a \in \mathbb{R}\}$:
 - Clearly, Ø and ℝ are in £ℜ, and for any a ∈ ℝ, (-∞, a) meets the definition of £ℜ.
 - Conversely, any V ∈ LR that is not Ø or R must be of the form (-∞, a) for some a ∈ R, by the definition of LR.
- **3.** \mathfrak{LR} is strictly coarser than the standard topology \mathfrak{U} on \mathbb{R} :
 - Every element of \mathfrak{LR} is open in \mathfrak{U} , but there exist sets open in \mathfrak{U} , like (0,1), that cannot be a union of sets from \mathfrak{LR} .