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Exercise 1. Let X be a set and let L1,L2 : P(X) → P(X) be operators. Denote by
C : P(X) → P(X) the complement operator. Suppose that L1 = C ◦ L2 ◦ C; that is,
L1(A) = X \ L2(X \ A) for every A ∈ P(X). Prove that the following statements are
equivalent:

(1) For all A,B ⊆ X , the following properties hold:
(a) L1(∅) = ∅,
(b) A ⊆ L1(A),
(c) L1(L1(A)) = L1(A),
(d) L1(A ∪B) = L1(A) ∪ L1(B).

(2) For all A,B ⊆ X , the following properties hold:
(a) L2(X) = X ,
(b) L2(A) ⊆ A,
(c) L2(L2(A)) = L2(A),
(d) L2(A ∩B) = L2(A) ∩ L2(B).

For a topological space (X, T ), with Cl and Int denoting the closure and interior
operators respectively, show that Cl = C ◦ Int ◦C.

Solution. As C is the complement operator, we have that

L1 = C ◦ L2 ◦C ⇐⇒ L2 = C ◦ L1 ◦C ⇐⇒ C ◦ L1 = L2 ◦C.

(1) =⇒ (2):
(1) L2(X) = (C ◦ L1 ◦C)(X) = C ◦ L1(∅) = C(∅) = X .
(2) For any A ⊆ X , since C(A) ⊆ L1(C(A)) = (L1 ◦C)(A) = (L2 ◦C)(A), it fol-

lows by applying C again (noting that C is decreasing) that C(L2(C(A))) ⊆
A, implying L2(A) ⊆ A.

(3) By operator composition, L2 ◦ L2 = (C ◦ L1 ◦C) ◦ (C ◦ L1 ◦C). Given that
C ◦ C = Id, it simplifies to L2 ◦ L2 = C ◦ L1 ◦ L1 ◦ C = C ◦ L1 ◦ C = L2,
using L1 ◦ L1 = L1.

(4) For the property involving intersections, starting with the complement of
L2(A ∩ B) gives C(L2(A ∩ B)) = L1(C(A ∩ B)) = L1(C(A) ∪ C(B)) =
L1(C(A)) ∪ L1(C(B)) = C(L2(A)) ∪ C(L2(B)) = C(L2(A) ∩ L2(B)). Ap-
plying C to both sides yields L2(A ∩B) = L2(A) ∩ L2(B).

The implication (2) =⇒ (1) can be shown by analogous arguments.
For a topological space (X, T ), with Cl and Int denoting the closure and in-

terior operators respectively, consider any subset A ⊆ X . Since Int(X − A) ⊆
X − A, it follows that A ⊆ X − (Int(X − A)). Taking closures, we have A ⊆
X − (Int(X −A)). Conversely, since A ⊆ A, we deduce that X −A ⊆ X −A and
X − A ⊆ Int(X − A). Therefore, X − Int(X − A) ⊆ A. These inclusions prove
that A = X − (Int(X − A)), which shows that Cl = C ◦ Int ◦C. □

Exercise 2. Let d be the usual metric on R and d′ = min(1, d). Show that d and d′

are not Lipschitz equivalent.
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Solution. Assume, for the sake of contradiction, that d and d′ are Lipschitz equiv-
alent. This means there exist two positive real constants α and β such that for all
x, y ∈ R, we have

αd′(x, y) ≤ d(x, y) ≤ βd′(x, y).

Specifically, since d′ = min(1, d), this inequality implies that d(x, y) ≤ β, suggest-
ing that d is bounded by β.

However, by the definition of d, for any β > 0, we can find x, y ∈ R such that
d(x, y) > β. For instance, if we choose x = β and y = 3β, then d(x, y) = |x− y| =
2β > β, which contradicts the assumption that d(x, y) ≤ βd′(x, y) for all x, y.

Therefore, d and d′ cannot be Lipschitz equivalent. □

Exercise 3. Let (X, d) be a metric space, show that for all x, y, z ∈ X , we have:

|d(x, z)− d(x, y)| ≤ d(y, z).

Solution.
• By the triangle inequality, we have:

d(x, z) ≤ d(x, y) + d(y, z),

so d(x, z)− d(x, y) ≤ d(y, z).
• Again, using the triangle inequality, we get:

d(x, y) ≤ d(x, z) + d(z, y),

which rearranges to d(x, y)− d(x, z) ≤ d(y, z).
We conclude that

−d(y, z) ≤ d(x, z)− d(x, y) ≤ d(y, z).

Therefore,
|d(x, z)− d(x, y)| ≤ d(y, z).

□

Exercise 4. Let d1, d2 be two distances on X .
(1) Show that d = d1 + d2 and d′ = max(d1, d2) are distances on X .
(2) Show that d and d′ are Lipschitz equivalent.

Solution.
(1) To verify that d and d′ are distances on X , we must check that they satisfy

the three distance axioms: non-negativity, identity of separation, and the
triangle inequality.

• For d, since both d1 and d2 are non-negative for all x, y ∈ X , their
sum d1(x, y) + d2(x, y) is also non-negative. If x = y, then d1(x, y) =
d2(x, y) = 0, hence d(x, y) = 0. Conversely, if d(x, y) = 0, since d1 and
d2 are both distances, it follows that x = y. The triangle inequality
follows from the triangle inequalities for d1 and d2.
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• For d′, non-negativity and identity of separation follow similarly. The
triangle inequality for d′ uses the fact that max of two values is less
than or equal to the sum of the same two values.

(2) To show that d and d′ are Lipschitz equivalent, observe that for any x, y ∈
X ,

d′ ≤ d ≤ 2d′.

This is because d′ = max(d1, d2) ≤ d1+d2 = d and d1+d2 ≤ 2max(d1, d2) =
2d′. Therefore, for any x, y, it follows that 1

2
d(x, y) ≤ d′(x, y) ≤ d(x, y),

establishing the Lipschitz equivalence with Lipschitz constants α = 1 and
β = 2.

□

Exercise 5. Let us define the set

LR := {V ⊆ R : ∀x ∈ V, ∃a ∈ R such that x ∈ (−∞, a) ⊆ V } .
(1) Prove that LR forms a topology on R, referred to as the left ray topology.
(2) Demonstrate that

LR = {∅,R} ∪ {(−∞, a) : a ∈ R}.
(3) Establish that LR is strictly coarser than the standard topology U on R.

Solution.
1. To show LR forms a topology, we verify its properties:

• The empty set ∅ and R are in LR, as the conditions are vacuously true for
∅ and trivially satisfied for R.

• The intersection of two elements in LR remains in LR. Given U, V ∈ LR
and any x ∈ U ∩ V , we find a, b ∈ R such that x ∈ (−∞, a) ⊆ U and
x ∈ (−∞, b) ⊆ V . Letting c = min(a, b), it follows x ∈ (−∞, c) ⊆ U ∩ V .

• Arbitrary unions of elements in LR also belong to LR. For any (Ui)i∈I
in LR and x ∈

⋃
i∈I Ui, there exists a j ∈ I and an a ∈ R such that x ∈

(−∞, a) ⊆ Uj , implying x ∈ (−∞, a) ⊆
⋃

i∈I Ui.
2. We show LR is exactly {∅,R} ∪ {(−∞, a) : a ∈ R}:

• Clearly, ∅ and R are in LR, and for any a ∈ R, (−∞, a) meets the definition
of LR.

• Conversely, any V ∈ LR that is not ∅ or R must be of the form (−∞, a) for
some a ∈ R, by the definition of LR.

3. LR is strictly coarser than the standard topology U on R:
• Every element of LR is open in U, but there exist sets open in U, like (0, 1),

that cannot be a union of sets from LR.
□


