KFUPM-DEPARTMENT OF MATHEMATICS-MATH 453-EXAM III-TERM 232

MATH 453: EXAM III, TERM (232), MAY 07, 2024

EXAM III- MATH 453 Duration: 120 mn

Student Name:

ID:

Exercise 1. A subset *A* of a topological space (X, \mathcal{T}) is said to have the fixed point property if every continuous function $f : A \longrightarrow A$ has a fixed point (an $a \in A$ such that f(a) = a). Prove that if *A* has the fixed point property, then *A* is connected. Is the converse true?

Solution. By contraposition, we will show that if *A* is not connected, then there exists a continuous function $f : A \to A$ without a fixed point.

Indeed, since A is not connected, there exist two disjoint open sets U, V in A such that $A = U \cup V$. Pick $u \in U$ and $v \in V$, and define f on A by f(x) = v if $x \in U$ and f(x) = u if $x \in V$. Thus, f has no fixed points. Moreover, f is continuous. To see this, it suffices to notice that the preimage of any open set O in A is open. Let O be such an open set. We distinguish four cases:

- If $u \notin O$ and $v \notin O$, then $f^{-1}(O) = \emptyset$, which is open.
- If $u \in O$ and $v \notin O$, then $f^{-1}(O) = V$, which is open.
- If $u \notin O$ and $v \in O$, then $f^{-1}(O) = U$, which is open.
- If $u \in O$ and $v \in O$, then $f^{-1}(O) = U \cup V$, which is open.

The converse is false. It suffices to consider *A* as the unit circle and *f* as a rotation about the center 0. \Box

Exercise 2. Let $f : \mathbb{C} \to \mathbb{C}$ be a continuous function such that, for every $z \in \mathbb{C}$, we have $f(z)^2 = z^2$.

- (1) Consider the function $g : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ defined by $g(z) = \frac{f(z)}{z}$. Use the connectedness of $\mathbb{C} \setminus \{0\}$ to show that g(z) is constant.
- (2) Find all such functions f.

Solution. Given any $z \in \mathbb{C}$, the equation $f(z)^2 = z^2$ implies that f(z) could either be z or -z. Consider the function $g : \mathbb{C}^* \to \mathbb{C}$ defined by $g(z) = \frac{f(z)}{z}$. The function g is continuous over \mathbb{C}^* and maps into the set $\{-1, 1\}$.

Given that \mathbb{C}^* (the set of all non-zero complex numbers) is path-connected, the image $g(\mathbb{C}^*)$ must also be path-connected. This necessitates that g is constant across its domain. If g(z) = 1 for all z, then f(z) = z for every $z \in \mathbb{C}^*$; as in addition f(0) = 0, the expression of f(z) extends to all $z \in \mathbb{C}$. Similarly, if g(z) = -1, then f(z) = -z for every $z \in \mathbb{C}$.

Exercise 3. Let *X* be a connected space and $(O_i)_{i \in I}$ an open covering of *X*. Show that for any $x, y \in X$, there exists a finite subfamily $(O_{i_p})_{1 \leq p \leq n}$ such that $x \in O_{i_1}$, $y \in O_{i_n}$, and $O_{i_p} \cap O_{i_{p+1}} \neq \emptyset$ for $1 \leq p \leq n - 1$.

Solution. For an element $x \in X$, define A_x as the set of points y for which there exists a finite sequence of open sets $(O_{i_p})_{1 \le p \le n}$ connecting x to y as specified. A_x is open because for any point in A_x , there exists an open set O_{i_n} containing it and meeting the criteria for A_x . To show A_x is closed, consider a limit point z

2

of A_x . There exists an open set O_i containing z that intersects A_x . Extending the sequence to include O_i shows $z \in A_x$, proving A_x is closed. Since A_x is both open and closed in the connected space X, it must be that $A_x = X$, establishing the result.

Exercise 4. Show that in an unbounded connected metric space, every sphere is non-empty.

Solution. Suppose there exists an empty sphere S(a, r) with r > 0. Let $B'(a, r) = \overline{B}(a, r) = \{x \in X : d(a, x) \le r\}$, then we can express

$$X = B(a, r) \cup (X - B'(a, r)),$$

where both open sets B(a, r) and X - B'(a, r) are non-empty, the latterdue to the unboundedness of X. The connectedness of X then leads to a contradiction. \Box

Exercise 5. Let *A* and *B* be two path-connected subsets of the Euclidean space $E = \mathbb{R}^n$.

- (1) Show that $A \times B$ is path-connected.
- (2) Deduce that A + B is path-connected.
- (3) Is the interior of *A* always path-connected?

Solution. Let $(a, b) \in A \times B$ and $(a', b') \in A \times B$. Since A is path-connected, there exists a continuous function $f : [0, 1] \to A$ such that f(0) = a and f(1) = a'. Similarly, since B is path-connected, there exists a continuous function $g : [0, 1] \to B$ such that g(0) = b and g(1) = b'. Define, for $t \in [0, 1]$, h(t) = (f(t), g(t)). The function h is continuous, with values in $A \times B$ and satisfies h(0) = (a, b), h(1) = (a', b'). Therefore, $A \times B$ is path-connected.

Let $\varphi : A \times B \to E$ be defined by $(a, b) \mapsto a + b$. The function φ is continuous, and $\varphi(A \times B) = A + B$. Since $A \times B$ is path-connected, it follows that A + B is also path-connected.

Consider a counterexample in \mathbb{R}^2 . Take for *A* the union of two disjoint balls connected by a segment. This set is path-connected. However, the interior of *A*, which is the union of the two open balls, is disconnected. So it is not path-connected.

Exercise 6. Let *X* be a topological space, $A \subseteq X$, and *B* be a connected subset of *X*. Show that if *B* meets *A* and *X* – *A*, then *B* meets Fr(A).

Solution. As $X = Int(A) \cup Fr(A) \cup Ext(A)$, we can express *B* as

 $B = [\operatorname{Int}(A) \cap B] \cup [B \cap \operatorname{Fr}(A)] \cup [\operatorname{Int}(X - A) \cap B].$

Assume *B* does not meet Fr(A), that is $B \cap Fr(A) = \emptyset$; then $B = (Int(A) \cap B) \cup (Int(X - A) \cap B)$ forms a disjoint union.

Since *B* meets both *A* and *X*−*A*, we have $\emptyset \neq B \cap A = \text{Int}(A) \cap B$ and $\emptyset \neq B \cap (X - A) = \text{Ext}(A) \cap B$. Thus, $B = (\text{Int}(A) \cap B) \cup (\text{Int}(X - A) \cap B)$ would be a partition of *B* into two non-empty open subsets, contradicting the fact that *B* is connected. Hence, our initial assumption must be wrong, implying $B \cap \text{Fr}(A) \neq \emptyset$.