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Exercise 1. A subset A of a topological space (X, T ) is said to have the fixed point
property if every continuous function f : A −→ A has a fixed point (an a ∈ A such
that f(a) = a). Prove that if A has the fixed point property, then A is connected.
Is the converse true?

Solution. By contraposition, we will show that if A is not connected, then there
exists a continuous function f : A → A without a fixed point.
Indeed, since A is not connected, there exist two disjoint open sets U, V in A such
that A = U ∪ V . Pick u ∈ U and v ∈ V , and define f on A by f(x) = v if x ∈ U
and f(x) = u if x ∈ V . Thus, f has no fixed points. Moreover, f is continuous. To
see this, it suffices to notice that the preimage of any open set O in A is open. Let
O be such an open set. We distinguish four cases:

• If u /∈ O and v /∈ O, then f−1(O) = ∅, which is open.
• If u ∈ O and v /∈ O, then f−1(O) = V , which is open.
• If u /∈ O and v ∈ O, then f−1(O) = U , which is open.
• If u ∈ O and v ∈ O, then f−1(O) = U ∪ V , which is open.

The converse is false. It suffices to consider A as the unit circle and f as a rotation
about the center 0. □

Exercise 2. Let f : C → C be a continuous function such that, for every z ∈ C, we
have f(z)2 = z2.

(1) Consider the function g : C \ {0} → C defined by g(z) = f(z)
z

. Use the
connectedness of C \ {0} to show that g(z) is constant.

(2) Find all such functions f .

Solution. Given any z ∈ C, the equation f(z)2 = z2 implies that f(z) could either
be z or −z. Consider the function g : C∗ → C defined by g(z) = f(z)

z
. The function

g is continuous over C∗ and maps into the set {−1, 1}.
Given that C∗ (the set of all non-zero complex numbers) is path-connected, the
image g(C∗) must also be path-connected. This necessitates that g is constant
across its domain. If g(z) = 1 for all z, then f(z) = z for every z ∈ C∗; as in
addition f(0) = 0, the expression of f(z) extends to all z ∈ C. Similarly, if g(z) =
−1, then f(z) = −z for every z ∈ C. □

Exercise 3. Let X be a connected space and (Oi)i∈I an open covering of X . Show
that for any x, y ∈ X , there exists a finite subfamily (Oip)1≤p≤n such that x ∈ Oi1 ,
y ∈ Oin , and Oip ∩Oip+1 ̸= ∅ for 1 ≤ p ≤ n− 1.

Solution. For an element x ∈ X , define Ax as the set of points y for which there
exists a finite sequence of open sets (Oip)1≤p≤n connecting x to y as specified. Ax

is open because for any point in Ax, there exists an open set Oin containing it
and meeting the criteria for Ax. To show Ax is closed, consider a limit point z
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of Ax. There exists an open set Oi containing z that intersects Ax. Extending the
sequence to include Oi shows z ∈ Ax, proving Ax is closed. Since Ax is both open
and closed in the connected space X , it must be that Ax = X , establishing the
result. □

Exercise 4. Show that in an unbounded connected metric space, every sphere is
non-empty.

Solution. Suppose there exists an empty sphere S(a, r) with r > 0. Let B′(a, r) =
B(a, r) = {x ∈ X : d(a, x) ≤ r}, then we can express

X = B(a, r) ∪ (X −B′(a, r)),

where both open sets B(a, r) and X −B′(a, r) are non-empty, the latterdue to the
unboundedness of X . The connectedness of X then leads to a contradiction. □

Exercise 5. Let A and B be two path-connected subsets of the Euclidean space
E = Rn.

(1) Show that A×B is path-connected.
(2) Deduce that A+B is path-connected.
(3) Is the interior of A always path-connected?

Solution. Let (a, b) ∈ A×B and (a′, b′) ∈ A×B. Since A is path-connected, there
exists a continuous function f : [0, 1] → A such that f(0) = a and f(1) = a′. Sim-
ilarly, since B is path-connected, there exists a continuous function g : [0, 1] → B
such that g(0) = b and g(1) = b′. Define, for t ∈ [0, 1], h(t) = (f(t), g(t)). The func-
tion h is continuous, with values in A×B and satisfies h(0) = (a, b), h(1) = (a′, b′).
Therefore, A×B is path-connected.
Let φ : A×B → E be defined by (a, b) 7→ a+ b. The function φ is continuous, and
φ(A × B) = A + B. Since A × B is path-connected, it follows that A + B is also
path-connected.
Consider a counterexample in R2. Take for A the union of two disjoint balls
connected by a segment. This set is path-connected. However, the interior of
A, which is the union of the two open balls, is disconnected. So it is not path-
connected. □

Exercise 6. Let X be a topological space, A ⊆ X , and B be a connected subset of
X . Show that if B meets A and X − A, then B meets Fr(A).

Solution. As X = Int(A) ∪ Fr(A) ∪ Ext(A), we can express B as

B = [Int(A) ∩B] ∪ [B ∩ Fr(A)] ∪ [Int(X − A) ∩B].

Assume B does not meet Fr(A), that is B ∩ Fr(A) = ∅; then B = (Int(A) ∩ B) ∪
(Int(X − A) ∩B) forms a disjoint union.
Since B meets both A and X−A, we have ∅ ≠ B∩A = Int(A)∩B and ∅ ≠ B∩(X−
A) = Ext(A)∩B. Thus, B = (Int(A)∩B)∪ (Int(X −A)∩B) would be a partition
of B into two non-empty open subsets, contradicting the fact that B is connected.
Hence, our initial assumption must be wrong, implying B ∩ Fr(A) ̸= ∅. □


