KFUPM-DEPARTMENT OF MATHEMATICS-MATH 453-FINAL EXAM-TERM 232

MATH 453: FINAL EXAM, TERM (232), MAY 22, 2024

FINAL EXAM- MATH 453 Duration: 180 mn

Student Name:

ID:

Exercise 1. Let (X, \mathcal{T}) be a topological space. Show that if X is compact, then every sequence of elements of X has a cluster point (an adherent point).

Solution. The set of cluster points (adherent points) of the sequence $(x_n)_{n\in\mathbb{N}}$ is defined as the intersection of the closures of its tails:

$$
Adh({x_n}) = \bigcap_{n \ge 1} \overline{\{x_k : k \ge n\}}.
$$

Denote $C_n = \{x_k : k \geq n\}$ for each $n \in \mathbb{N}$. The family $\{C_n\}_{n \in \mathbb{N}}$ consists of a decreasing sequence of nonempty closed subsets of X . Since X is compact, by the finite intersection property (FIP), we have:

$$
\bigcap_{n\in\mathbb{N}}C_n\neq\emptyset.
$$

Hence, Adh $({x_n})$ is nonempty, establishing that every sequence in X has at least one cluster point. □

Exercise 2. Let $a < b$ be real numbers. Show that the subspace $K = [a, b]$ of $(\mathbb{R}, \mathfrak{U})$ is both a completion and a compactification of the subspace $I = (a, b)$ of $(\mathbb{R}, \mathfrak{U})$.

Solution. It is evident that K is a compact subset of $(\mathbb{R}, \mathfrak{U})$ since it is a closed and bounded set. Additionally, the map $i: (a, b) \rightarrow K$ is an embedding, and the closure of $i((a, b))$ is $[a, b] = K$. Therefore, K is a compactification of (a, b) .

Furthermore, since every compact metric space is complete, K is complete. Alternatively, K being a closed subset of a complete metric space is also complete. Moreover, the embedding $i: (a, b) \rightarrow K$ is an isometry, thus K is a completion of $(a, b).$

Exercise 3. Let (X, d) be a metric space and $a, b, \alpha, \beta \in X$.

- (1) Show that $|d(a, b) d(\alpha, \beta)| \leq d(a, \alpha) + d(b, \beta)$.
- (2) Show that if (x_n) and (y_n) are Cauchy sequences in (X, d) , then $(d(x_n, y_n))$ is a Cauchy sequence in $\mathbb R$ (equipped with the usual distance).
- (3) Let X be the quotient set of the set Cau(X) of all Cauchy sequences in X by the equivalence relation \sim defined by

$$
((x_n) \sim (y_n)) \Longleftrightarrow \lim_{n \to +\infty} d(x_n, y_n) = 0.
$$

Consider the mapping $\widehat{d}: \widehat{X} \times \widehat{X} \to \mathbb{R}$ defined by

$$
\widehat{d}(\widehat{x}, \widehat{y}) = \lim_{n \to +\infty} d(x_n, y_n),
$$

where \hat{x} and \hat{y} are the equivalence classes of the Cauchy sequences (x_n) and (y_n) , respectively.

Show that d is well-defined.

(4) Show that d is a metric on X.

Solution. (1) By the triangle inequality, we have

$$
d(a,b) \le d(a,\alpha) + d(\alpha,\beta) + d(\beta,b),
$$

and

$$
d(\alpha, \beta) \le d(\alpha, a) + d(a, b) + d(b, \beta).
$$

We deduce that

$$
-(d(a,\alpha)+d(b,\beta)) \leq d(a,b)-d(\alpha,\beta) \leq d(a,\alpha)+d(b,\beta),
$$

showing that $|d(a, b) - d(\alpha, \beta)| \leq d(a, \alpha) + d(b, \beta)$.

(2) Let (x_n) and (y_n) be Cauchy sequences in (X, d) and let $\varepsilon > 0$. Then there exist $p, q \in \mathbb{N}$ such that

$$
\begin{array}{rcl} d(x_n,x_m) & \leq & \frac{\varepsilon}{2} & \text{for all} \ m,n \geq p, \\ d(y_n,y_m) & \leq & \frac{\varepsilon}{2} & \text{for all} \ m,n \geq q. \end{array}
$$

It follows that

$$
|d(x_n, y_n) - d(x_m, y_m)| \le d(x_n, x_m) + d(y_n, y_m) \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
$$

As a result, $(d(x_n, y_n))$ is a Cauchy sequence in \mathbb{R} .

(3) By the previous question, $\lim_{n\to+\infty} d(x_n, y_n)$ exists and is nonnegative. Suppose $((x_n) \sim (y_n))$ and $((a_n) \sim (b_n))$. Then

$$
\lim_{n \to +\infty} d(x_n, y_n) = 0 = \lim_{n \to +\infty} d(a_n, b_n).
$$

On the other hand, by the first question,

$$
|d(x_n, a_n) - d(y_n, b_n)| \leq d(x_n, y_n) + d(a_n, b_n).
$$

Hence,

$$
\lim_{n \to +\infty} |d(x_n, a_n) - d(y_n, b_n)| \le \lim_{n \to +\infty} d(x_n, y_n) + \lim_{n \to +\infty} d(a_n, b_n) = 0.
$$

Therefore, $\lim_{n\to+\infty} d(x_n, a_n) = \lim_{n\to+\infty} d(y_n, b_n)$, meaning that \tilde{d} is well-defined.
(4) Straightforward. (4) Straightforward.

Exercise 4.

- (1) Show that every totally bounded metric space is separable.
- (2) Deduce that every compact metric space is second countable.
- (3) Use Urysohn Metrization theorem to show that if X is a second countable compact Hausdorff space, then it is metrizable.

Solution. (1) Suppose that (X, d) is totally bounded. Then for each $n \in \mathbb{N}$, there exists a finite subset $A_n \subseteq X$ such that $X = \left[\begin{array}{c} \end{array} \right]$ $x \in A_n$ $B(x,$ 1 $\frac{1}{n}$). Let $A = \bigcup_{n \in \mathbb{N}}$ n∈N A_n ; then A is a countable subset of X. Now for each $x \in X$, we have $d(x, A_n) \leq \frac{1}{n}$ $\frac{1}{n}$ for every $n \in \mathbb{N}$. Thus, $d(x, A) = 0$, and consequently $x \in A$, showing that A is dense in X. It follows that X is separable.

(2) Let (X, d) be a compact metric space. By the above proposition, $(X, \mathcal{T}(d))$ is separable. Let A be a dense countable subset of X. Then $\mathcal{B} := \{B(x, \frac{1}{p}) \mid x \in$ $A, p \in \mathbb{N}$ is a countable basis for the topology $\mathcal{T}(d)$, showing that $(X, \mathcal{T}(d))$ is second countable.

(3) Urysohn Metrization Theorem (UMT) states that for a space X , the following statements are equivalent.

- (*i*) *X* is a second countable T_3 -space.
- (ii) X is separable and metrizable.

Now, assume X is a second countable compact Haussdorff, then as as every compact Haussdorff is a T_3 -space, by (UMT), X is metrizable.

Exercise 5. Let (X, d) be a metric space and let $f : (X, d) \longrightarrow (X, d)$ be an injective function. For $x, y \in X$, define $d_f(x, y) = d(f(x), f(y))$.

- (1) Show that d_f is a metric on X.
- (2) Show that d and d_f are topologically equivalent if and only if f induces a homeomorphism from (X, d) to $(f(X), d)$ (i.e., f is an embedding).
- (3) Deduce that if we let $\delta(x, y) =$ $\frac{x}{1+|x|} - \frac{y}{1+}$ $1+|y|$ for $x, y \in \mathbb{R}$, then δ is a metric topologically equivalent to the usual metric on R.
- (4) Show that the metric δ defined previously is not complete.

Solution. (1) Straightforward.

(2) Let $f_1: (X, d) \longrightarrow (f(X), d)$ be the function induced by f, let $g = \mathbf{1}_X: (X, d) \longrightarrow$ (X, d_f) be the identity, and let $h: (X, d_f) \longrightarrow (f(X), d)$ be the function induced by f (i.e., $h(x) = f(x)$).

It is clear that h is a bijective isometry, and in particular, it is a homeomorphism. It is also clear that $f_1 = h \circ g$.

- Suppose that d and d_f are topologically equivalent, then g is a homeomorphism, and consequently, f_1 is a homeomorphism, as desired.

- Conversely, assume f_1 is a homeomorphism; then, since $h = f_1 \circ g^{-1}$, we deduce that h is a homeomorphism. As a result, d and d_f are topologically equivalent.

(3) It suffices to show that the function $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x) = \frac{x}{1+|x|}$ is an embedding. It is clear that f is injective and induces a homeomorphism from R onto the open interval $(-1, 1)$ (its inverse function assigns to every $x \in (-1, 1)$ the value $\frac{x}{1-|x|}$).

(4) Consider the sequence of real numbers defined by $x_n = n$. Then, for all positive integers n, p , we have:

$$
\delta(x_{n+p}, x_n) = \left| \frac{n+p}{1+|n+p|} - \frac{n}{1+|n|} \right| = \frac{p}{(1+n)(1+n+p)} < \frac{1}{1+n} \underset{n \to +\infty}{\longrightarrow} 0.
$$

It follows that the sequence (x_n) is Cauchy in (\mathbb{R}, δ) . As $(x_n = n)$ does not converge with respect to the usual metric d_0 , it does not converge with respect to δ (since d_0 and δ are topologically equivalent).

Therefore, (\mathbb{R}, δ) is not a complete metric space. \Box

Exercise 6. Let X be a topological space. Show that the following statements are equivalent:

- (i) The image of any continuous map from X to the real line is a closed and bounded subset of R.
- (ii) The image of any continuous map from X to the real line is a bounded subset of R.
- (iii) Any continuous map from X to the real line attains its absolute maximum and minimum.

Solution.

 $(i) \implies (ii)$: This implication is straightforward as every closed and bounded subset of $\mathbb R$ is necessarily bounded.

 $(i) \implies (iii)$: If the image of a continuous function to R is closed and bounded, it must contain its supremum and infimum due to being closed. Therefore, the function attains its absolute maximum and minimum.

 $(iii) \Longrightarrow (ii)$: A function that attains both an absolute maximum and minimum is by definition bounded, hence the image is bounded.

 $(ii) \Longrightarrow (i)$: Assume that for any continuous map $f : X \longrightarrow \mathbb{R}$, the image $f(X)$ is bounded. We need to prove that $f(X)$ is also closed.

Suppose for contradiction that there exists a limit point a of $f(X)$ not in $f(X)$; that is, $a \in f(X) \setminus f(X)$.

Define $h : \mathbb{R} \setminus \{a\} \longrightarrow \mathbb{R}$ by $h(t) = \frac{1}{t-a}$ and consider $g = h \circ f$. The function g is continuous on X.

Given *a* as a limit point, for every positive integer *n*, there exists $x_n \in X$ with $f(x_n)$ in $\left(a-\frac{1}{n}\right)$ $\frac{1}{n}, a + \frac{1}{n}$ $\frac{1}{n}$). Hence,

$$
|g(x_n)| = \frac{1}{|f(x_n) - a|} > n,
$$

indicating that $g(X)$ is unbounded, which contradicts the assumption that images under continuous maps from X to $\mathbb R$ are bounded. Thus, $f(X)$ must be closed. □

Exercise 7. Show that every countably compact space is pseudocompact (every continuous function from X to the real line is bounded).

Solution. Suppose X is countably compact and that $f: X \longrightarrow \mathbb{R}$ is continuous. The sets

$$
U_n = f^{-1}((-n, n)) = \{x \in X : -n < f(x) < n\}
$$

form a countable open cover of X, so for some N, the sets U_1, U_2, \ldots, U_N cover X. Since $U_1 \subseteq U_2 \subseteq \cdots \subseteq U_N$, this implies that $U_N = X$. So $-N < f(x) < N$ for all $x \in X$. In other words, f is bounded, so X is pseudocompact.

Exercise 8. Determine whether the following sets of $(\mathbb{R}^2, \mathfrak{U}_2)$ are compact or not:

(1)
$$
A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^4 = 1\}.
$$

(2) $B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^5 = 2\}.$

Solution.

- (1) Given that $x^2 \ge 0$ and $y^4 \ge 0$, the equation $x^2 + y^4 = 1$ ensures $x^2 \le 1$ and $y^4 \leq 1$. Hence, $|x| \leq 1$ and $|y| \leq 1$, meaning $||(x, y)||_{\infty} \leq 1$. Therefore, A is bounded. Additionally, A is the preimage of $\{1\}$, which is closed, under the continuous mapping $f(x,y) = x^2 + y^4$. Thus, A is also closed, making it a compact subset of \mathbb{R}^2 .
- The set *B* is unbounded. For any $r > 0$, the point $(r, \sqrt[5]{2-r^2})$ belongs to B. Note that the fifth root is defined for all real numbers. However, to *B*. Note that the firth root is defined for all real numbers. However,
 $||(r, \sqrt[5]{2-r^2})||_{\infty} \geq r$ can be arbitrarily large. Thus, *B* is not bounded and consequently not compact.

$$
\Box
$$

Exercise 9. Let $C = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_1 + \cdots + x_n = 1, x_1 \geq 0, \ldots, x_n \geq 0\}.$

- (1) Show that *C* is a compact subset of \mathbb{R}^n .
- (2) Let $f: C \longrightarrow \mathbb{R}$ be a continuous function such that $f(x) > 0$ for all $x \in C$. Prove that $\inf_{x \in C} f(x) > 0$.

Solution.

- (1) Let us show that C is compact. Indeed, C is bounded because, for any $x \in C$, we have $||x||_1 = |x_1| + \cdots + |x_n| = x_1 + \cdots + x_n = 1$. Thus, C is bounded. Now, let us show that C is closed. Define $C_0 = \{(x_1, \ldots, x_n) \in$ \mathbb{R}^n : $x_1 + \cdots + x_n = 1$ } and $C_i = \{(x_1, \ldots, x_n) \in \mathbb{R}^n$: $x_i \ge 0\}$ for $i = 1, \ldots, n$. Then $C = C_0 \cap C_1 \cap \cdots \cap C_n$. Each C_i is closed as the preimage of a closed set under a continuous function. Therefore, C is compact.
- (2) Since f is continuous on the compact set C , it is bounded and attains its bounds. In particular, there exists $a \in C$ such that $f(a) = \inf_{x \in C} f(x)$. Given that $f(a) > 0$, we conclude that $\inf_{x \in C} f(x) > 0$.

$$
\Box
$$

Exercise 10.

- (1) Show that if (x_n) is a sequence of elements in a topological space (X, \mathcal{T}) and $\ell \in X$ is a limit of (x_n) , then $K = \{x_n : n \in \mathbb{N}\} \cup \{\ell\}$ is a compact subset of X.
- (2) Let (X, \mathfrak{D}) be an infinite countable discrete space. Show that the one-point compactification of (X, \mathfrak{D}) is homeomorphic to $K = \{\frac{1}{n}\}$ $\frac{1}{n} : n \in \mathbb{N} \} \cup \{0\}$ (equipped with the subspace topology inherited from $(\mathbb{R}, \mathfrak{U})$).

Solution.

- (1) Let $\mathcal{U} = \{U_i : i \in I\}$ be an open covering of K. Choose $i_0 \in I$ such that $\ell \in U_{i_0}$. As (x_n) converges to ℓ , there exists $p \in \mathbb{N}$ such that $x_n \in U_{i_0}$ for every $n \geq p$. Let $i_1, i_2, \ldots, i_p \in I$ be such that $x_j \in U_{i_j}$ for $j = 1, 2, \ldots, p$. Thus, $\{U_{i_j} : j = 0, 1, \ldots, p\}$ is a finite subcover of $\mathcal U$. Therefore, K is compact.
- (2) Let $\gamma: X \longrightarrow \mathbb{N}$ be a bijection. Then, the function $e: (X, \mathfrak{D}) \longrightarrow (K \setminus \{0\}, \mathfrak{U})$ defined by $e(x) = \frac{1}{\gamma(x)}$ is a homeomorphism. It follows that e extends to a homeomorphism $e^*: X^* \longrightarrow K$.

□