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Exercise 1. Let (X, T ) be a topological space. Show that if X is compact, then
every sequence of elements of X has a cluster point (an adherent point).

Solution. The set of cluster points (adherent points) of the sequence (xn)n∈N is
defined as the intersection of the closures of its tails:

Adh({xn}) =
⋂
n≥1

{xk : k ≥ n}.

Denote Cn = {xk : k ≥ n} for each n ∈ N. The family {Cn}n∈N consists of a de-
creasing sequence of nonempty closed subsets of X . Since X is compact, by the
finite intersection property (FIP), we have:⋂

n∈N

Cn ̸= ∅.

Hence, Adh({xn}) is nonempty, establishing that every sequence in X has at least
one cluster point. □

Exercise 2. Let a < b be real numbers. Show that the subspace K = [a, b] of (R,U)
is both a completion and a compactification of the subspace I = (a, b) of (R,U).

Solution. It is evident that K is a compact subset of (R,U) since it is a closed
and bounded set. Additionally, the map i : (a, b) → K is an embedding, and the
closure of i((a, b)) is [a, b] = K. Therefore, K is a compactification of (a, b).

Furthermore, since every compact metric space is complete, K is complete.
Alternatively, K being a closed subset of a complete metric space is also complete.
Moreover, the embedding i : (a, b) → K is an isometry, thus K is a completion of
(a, b). □

Exercise 3. Let (X, d) be a metric space and a, b, α, β ∈ X .
(1) Show that |d(a, b)− d(α, β)| ≤ d(a, α) + d(b, β).
(2) Show that if (xn) and (yn) are Cauchy sequences in (X, d), then (d(xn, yn))

is a Cauchy sequence in R (equipped with the usual distance).
(3) Let X̂ be the quotient set of the set Cau(X) of all Cauchy sequences in X

by the equivalence relation ∼ defined by

((xn) ∼ (yn)) ⇐⇒ lim
n→+∞

d(xn, yn) = 0.

Consider the mapping d̂ : X̂ × X̂ → R defined by

d̂(x̂, ŷ) = lim
n→+∞

d(xn, yn),

where x̂ and ŷ are the equivalence classes of the Cauchy sequences (xn)
and (yn), respectively.

Show that d̂ is well-defined.
(4) Show that d̂ is a metric on X̂ .
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Solution. (1) By the triangle inequality, we have

d(a, b) ≤ d(a, α) + d(α, β) + d(β, b),

and
d(α, β) ≤ d(α, a) + d(a, b) + d(b, β).

We deduce that

−(d(a, α) + d(b, β)) ≤ d(a, b)− d(α, β) ≤ d(a, α) + d(b, β),

showing that |d(a, b)− d(α, β)| ≤ d(a, α) + d(b, β).
(2) Let (xn) and (yn) be Cauchy sequences in (X, d) and let ε > 0. Then there

exist p, q ∈ N such that

d(xn, xm) ≤ ε
2

for all m,n ≥ p,
d(yn, ym) ≤ ε

2
for all m,n ≥ q.

It follows that

|d(xn, yn)− d(xm, ym)| ≤ d(xn, xm) + d(yn, ym) ≤
ε

2
+

ε

2
= ε.

As a result, (d(xn, yn)) is a Cauchy sequence in R.
(3) By the previous question, limn→+∞ d(xn, yn) exists and is nonnegative. Sup-

pose ((xn) ∼ (yn)) and ((an) ∼ (bn)). Then

lim
n→+∞

d(xn, yn) = 0 = lim
n→+∞

d(an, bn).

On the other hand, by the first question,

|d(xn, an)− d(yn, bn)| ≤ d(xn, yn) + d(an, bn).

Hence,

lim
n→+∞

|d(xn, an)− d(yn, bn)| ≤ lim
n→+∞

d(xn, yn) + lim
n→+∞

d(an, bn) = 0.

Therefore, limn→+∞ d(xn, an) = limn→+∞ d(yn, bn), meaning that d̂ is well-defined.
(4) Straightforward. □

Exercise 4.
(1) Show that every totally bounded metric space is separable.
(2) Deduce that every compact metric space is second countable.
(3) Use Urysohn Metrization theorem to show that if X is a second countable

compact Hausdorff space, then it is metrizable.

Solution. (1) Suppose that (X, d) is totally bounded. Then for each n ∈ N, there

exists a finite subset An ⊆ X such that X =
⋃

x∈An

B(x,
1

n
). Let A =

⋃
n∈N

An; then A

is a countable subset of X . Now for each x ∈ X , we have d(x,An) ≤ 1
n

for every
n ∈ N. Thus, d(x,A) = 0, and consequently x ∈ A, showing that A is dense in X .
It follows that X is separable.
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(2) Let (X, d) be a compact metric space. By the above proposition, (X, T (d))
is separable. Let A be a dense countable subset of X . Then B := {B(x, 1

p
) | x ∈

A, p ∈ N} is a countable basis for the topology T (d), showing that (X, T (d)) is
second countable.

(3) Urysohn Metrization Theorem (UMT) states that for a space X , the follow-
ing statements are equivalent.

(i) X is a second countable T3-space.
(ii) X is separable and metrizable.
Now, assume X is a second countable compact Haussdorff, then as as every

compact Haussdorff is a T3-space, by (UMT), X is metrizable. □

Exercise 5. Let (X, d) be a metric space and let f : (X, d) −→ (X, d) be an injective
function. For x, y ∈ X , define df (x, y) = d(f(x), f(y)).

(1) Show that df is a metric on X .
(2) Show that d and df are topologically equivalent if and only if f induces a

homeomorphism from (X, d) to (f(X), d) (i.e., f is an embedding).
(3) Deduce that if we let δ(x, y) =

∣∣∣ x
1+|x| −

y
1+|y|

∣∣∣ for x, y ∈ R, then δ is a metric
topologically equivalent to the usual metric on R.

(4) Show that the metric δ defined previously is not complete.

Solution. (1) Straightforward.
(2) Let f1 : (X, d) −→ (f(X), d) be the function induced by f , let g = 1X : (X, d) −→

(X, df ) be the identity, and let h : (X, df ) −→ (f(X), d) be the function induced by
f (i.e., h(x) = f(x)).

It is clear that h is a bijective isometry, and in particular, it is a homeomorphism.
It is also clear that f1 = h ◦ g.

- Suppose that d and df are topologically equivalent, then g is a homeomor-
phism, and consequently, f1 is a homeomorphism, as desired.

- Conversely, assume f1 is a homeomorphism; then, since h = f1 ◦ g−1, we
deduce that h is a homeomorphism. As a result, d and df are topologically equiv-
alent.

(3) It suffices to show that the function f : R −→ R defined by f(x) = x
1+|x| is

an embedding. It is clear that f is injective and induces a homeomorphism from
R onto the open interval (−1, 1) (its inverse function assigns to every x ∈ (−1, 1)
the value x

1−|x| ).
(4) Consider the sequence of real numbers defined by xn = n. Then, for all

positive integers n, p, we have:

δ(xn+p, xn) =

∣∣∣∣ n+ p

1 + |n+ p|
− n

1 + |n|

∣∣∣∣ = p

(1 + n)(1 + n+ p)
<

1

1 + n
−→

n→+∞
0.

It follows that the sequence (xn) is Cauchy in (R, δ). As (xn = n) does not con-
verge with respect to the usual metric d0, it does not converge with respect to δ
(since d0 and δ are topologically equivalent).

Therefore, (R, δ) is not a complete metric space. □
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Exercise 6. Let X be a topological space. Show that the following statements are
equivalent:

(i) The image of any continuous map from X to the real line is a closed and
bounded subset of R.

(ii) The image of any continuous map from X to the real line is a bounded
subset of R.

(iii) Any continuous map from X to the real line attains its absolute maximum
and minimum.

Solution.
(i) =⇒ (ii): This implication is straightforward as every closed and bounded
subset of R is necessarily bounded.
(i) =⇒ (iii): If the image of a continuous function to R is closed and bounded,
it must contain its supremum and infimum due to being closed. Therefore, the
function attains its absolute maximum and minimum.
(iii) =⇒ (ii): A function that attains both an absolute maximum and minimum is
by definition bounded, hence the image is bounded.
(ii) =⇒ (i): Assume that for any continuous map f : X −→ R, the image f(X) is
bounded. We need to prove that f(X) is also closed.
Suppose for contradiction that there exists a limit point a of f(X) not in f(X);
that is, a ∈ f(X) \ f(X).
Define h : R \ {a} −→ R by h(t) = 1

t−a
and consider g = h ◦ f . The function g is

continuous on X .
Given a as a limit point, for every positive integer n, there exists xn ∈ X with
f(xn) in (a− 1

n
, a+ 1

n
). Hence,

|g(xn)| =
1

|f(xn)− a|
> n,

indicating that g(X) is unbounded, which contradicts the assumption that images
under continuous maps from X to R are bounded. Thus, f(X) must be closed.

□

Exercise 7. Show that every countably compact space is pseudocompact (every
continuous function from X to the real line is bounded).

Solution. Suppose X is countably compact and that f : X −→ R is continuous.
The sets

Un = f−1((−n, n)) = {x ∈ X : −n < f(x) < n}
form a countable open cover of X , so for some N , the sets U1, U2, . . . , UN cover X .
Since U1 ⊆ U2 ⊆ · · · ⊆ UN , this implies that UN = X . So −N < f(x) < N for all
x ∈ X . In other words, f is bounded, so X is pseudocompact. □

Exercise 8. Determine whether the following sets of (R2,U2) are compact or not:
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(1) A = {(x, y) ∈ R2 : x2 + y4 = 1}.
(2) B = {(x, y) ∈ R2 : x2 + y5 = 2}.

Solution.
(1) Given that x2 ≥ 0 and y4 ≥ 0, the equation x2 + y4 = 1 ensures x2 ≤ 1 and

y4 ≤ 1. Hence, |x| ≤ 1 and |y| ≤ 1, meaning ∥(x, y)∥∞ ≤ 1. Therefore, A
is bounded. Additionally, A is the preimage of {1}, which is closed, under
the continuous mapping f(x, y) = x2 + y4. Thus, A is also closed, making
it a compact subset of R2.

(2) The set B is unbounded. For any r > 0, the point (r, 5
√
2− r2) belongs

to B. Note that the fifth root is defined for all real numbers. However,
∥(r, 5

√
2− r2)∥∞ ≥ r can be arbitrarily large. Thus, B is not bounded and

consequently not compact.

□

Exercise 9. Let C = {(x1, . . . , xn) ∈ Rn : x1 + · · ·+ xn = 1, x1 ≥ 0, . . . , xn ≥ 0}.

(1) Show that C is a compact subset of Rn.
(2) Let f : C −→ R be a continuous function such that f(x) > 0 for all x ∈ C.

Prove that inf
x∈C

f(x) > 0.

Solution.
(1) Let us show that C is compact. Indeed, C is bounded because, for any

x ∈ C, we have ∥x∥1 = |x1| + · · · + |xn| = x1 + · · · + xn = 1. Thus, C is
bounded. Now, let us show that C is closed. Define C0 = {(x1, . . . , xn) ∈
Rn : x1+ · · ·+xn = 1} and Ci = {(x1, . . . , xn) ∈ Rn : xi ≥ 0} for i = 1, . . . , n.
Then C = C0 ∩ C1 ∩ · · · ∩ Cn. Each Ci is closed as the preimage of a closed
set under a continuous function. Therefore, C is compact.

(2) Since f is continuous on the compact set C, it is bounded and attains its
bounds. In particular, there exists a ∈ C such that f(a) = infx∈C f(x).
Given that f(a) > 0, we conclude that inf

x∈C
f(x) > 0.

□

Exercise 10.

(1) Show that if (xn) is a sequence of elements in a topological space (X, T )
and ℓ ∈ X is a limit of (xn), then K = {xn : n ∈ N} ∪ {ℓ} is a compact
subset of X .

(2) Let (X,D) be an infinite countable discrete space. Show that the one-point
compactification of (X,D) is homeomorphic to K = { 1

n
: n ∈ N} ∪ {0}

(equipped with the subspace topology inherited from (R,U)).

Solution.
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(1) Let U = {Ui : i ∈ I} be an open covering of K. Choose i0 ∈ I such that
ℓ ∈ Ui0 . As (xn) converges to ℓ, there exists p ∈ N such that xn ∈ Ui0 for
every n ≥ p. Let i1, i2, . . . , ip ∈ I be such that xj ∈ Uij for j = 1, 2, . . . , p.
Thus, {Uij : j = 0, 1, . . . , p} is a finite subcover of U . Therefore, K is
compact.

(2) Let γ : X −→ N be a bijection. Then, the function e : (X,D) −→ (K\{0},U)
defined by e(x) = 1

γ(x)
is a homeomorphism. It follows that e extends to a

homeomorphism e∗ : X∗ −→ K.
□


