King Fahd University of Petroleum and Minerals

Mathematics Department

Math 471 Exam II, 1st Semester (221),

Net Time Allowed: 90 minutes

November 10, 2022

Name:			
ID No.:			
Section NO.:			

Please:

1. Write clearly with a pen or dark pencil in the designed area for each question.

2. Fill your info clearly, and write your ID NO in each page in the right corner.

3. Show <u>all</u> your steps, no credit will be given to wrong steps.

1) Let A be $n \times n$ matrix and $x \in \mathbb{R}^n$. Show that

$$||Ax||_{\infty} \le n^{\frac{1}{2}} ||A||_{2} ||x||_{\infty}$$

2) Find the **linear least squares polynomial** approximation for $f(x) = x^3$ on the interval [-1, 1].

3) Let
$$A = \begin{bmatrix} 3 & 2 \\ 3 & -2 \end{bmatrix}$$
.

- a. Find the eigenvalues and eigenvectors?
- b. Find the **condition number** for *A* with relative to <u>norm two</u>?

4) Given the linear system

$$2x + y = 3$$
$$x + 3y = 2.$$

- a) Find the first <u>two iterations</u> of Jacobi, using $x^0 = 0$,
- b) Find the first two iterations of SOR method with $\omega = 1.05$ and using $x^0 = 0$,
- c) Find the optimal ω for SOR for that linear system.

5) Let $\{1, x, x^2 - \frac{1}{3}, x^3 - \frac{3}{5}x\}$ is a set of orthogonal polynomials on [-1,1] with respect to the weight function w = 1. Use that set to find a **least squares polynomial** approximation **of degree two** for $f(x) = \sin x$ with w = 1 on [-1,1]. Given that, $\int_0^1 \sin x \, dx = 1 - \cos(1)$, $\int_0^1 x \sin x \, dx = \sin(1) - \cos(1)$, and $\int_0^1 x^2 \sin x \, dx = 2 \sin(1) + \cos(1) - 2$.

- 6) Given that $A = \begin{bmatrix} 1.01 & 0.99 \\ 0.099 & 1.01 \end{bmatrix}$ and $b = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. If $||A^{-1}||_{\infty}$ and an approximation $\tilde{x} = (2, 0)^t$ is used.
 - a) Find a bound for the relative error.
 - b) Using the iterative refinement method, find the 2nd iteration for the approximation.

7) Consider the collection of data

x	1.00	1.25	1.50	1.75	2.00
y	5.10	5.79	6.53	7.45	8.46

Construct the least squares approximation of the form $y = be^{ax}$. (Show all necessary work, don't use the built-in command in the calculator)

8) Let λ be an eigenvalue of $n \times n$ matrix A and $x \neq 0$ be an associated eigenvector. Let $\alpha \neq \lambda$ be given. Show that if $A - \alpha I$ is nonsingular, then $\frac{1}{\lambda - \alpha}$ is an eigenvalue of $(A - \alpha I)^{-1}$ with eigenvector x.

*Please, you need to write in the bottom of the question where you need more space "Go to page 10".

*Please, you need to write in the bottom of the question where you need more space "Go to page 11".

*Please, you need to write in the bottom of the question where you need more space "Go to page 12".