King Fahd University of Petroleum and Minerals

Mathematics Department

Math 471 Final Exam, 1st Semester (221),

Net Time Allowed: 180 minutes

25 Dec. 20022

Name:

ID No.:

Please:

- 1. Write clearly with a pen or dark pencil in the designed area for each question.
- 2. Fill your info clearly, and write your ID NO in each page in the right corner.
- 3. Show **all** your steps, no credit will be given to wrong steps.

Γ	1	1		
	1	2	0	1
	0	0	3	3
L	1 1 0 0	1	3	3 2

and use these to find bounds for the **spectral radius** of A.

10 points	
-----------	--

2) Consider $\mathbf{v}_1 = (1, 1, 0)^t, \ \mathbf{v}_2 = (1, 0, 1)^t, \ \mathbf{v}_3 = (0, 1, 1)^t$

- a) Show that the set is linearly independent
- b) Use the **Gram-Schmidt process** to find a set of orthogonal vectors.

3) Let $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ and use $x^{(0)} = (1,0)^t$.

- a. Find the first two iterations obtained by the Power method applied to A
- b. Find the first two iterations obtained by the Symmetric Power method applied to A

$$\begin{bmatrix} 12 & 10 & 4 \\ 10 & 8 & -5 \\ 4 & -5 & 3 \end{bmatrix}$$

to place it in tridiagonal form.

5) Apply two iterations of the **QR method** to this matrix

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$
 10 points

10	nainta
10	points

x_i	1.0	2.0	3.0	4.0	5.0	
y_i	1.3	3.5	4.2	5.0	7.0	,

Use the singular value decomposition technique to determine the least squares polynomial of degree 1 where

	7.69	ן0.00				г 0.16	0.76	-0.41	-0.36	–0.31
	0.00 0.92	r0 27	0.061		0.29	0.47	0.07	0.39	0.73	
<i>s</i> =	0.00	0.00	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, V = \begin{bmatrix} 0.27 \\ 0.96 \end{bmatrix} -$	0.90	<i>U</i> =	0.41	0.18	0.84	-0.20	-0.24
	0.00	0.00 0.00		-0.271		0.54	-0.11	-0.22	0.65	-0.47
	0.00	0.00J				L0.66	-0.40	-0.27	-0.49	0.29

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ -1 & 1 \end{bmatrix}$$

8) Consider $A = \begin{bmatrix} 4 & -2 \\ -2 & 4 \end{bmatrix}$

- a. Show that *A* is **positive definite**.
- b. Use the **Cholesky** Algorithm to find a factorization of the form LL^t for A.

$$4x - y - z = 1,$$

-x + 4y - w = 2,
-x + 4z - w = 0,
-y - z + 4w = 1

Find an approximation to the solution by using **the SOR Method** with the optimal ω =1.07. Perform only <u>two</u> iterations. Use $x^{(0)} = (0,0,0,0)^t$.

Г

 $58.9x_1 + 0.03x_2 = 59.2,$ -6.10x₁ + 5.31x₂ = 47.0.

- 11) **True** or **False**: If true, explain why. If false, give a counterexample.
 - a. If A is a nonsingular symmetric matrix, then A^{-1} is also symmetric. ()

b. The product of two tridiagonal matrices is tridiagonal. ()

c. If A and B are two square matrices, then |A + B| = |A| + |B|. ()

d. If A and B are similar matrices, then $||A||_{\infty} = ||B||_{\infty}$. ()

e. Applying an elementary row operation to an orthogonal matrix produces an orthogonal matrix. ()

f. If λ is an eigenvalue of both A and B, then it is an eigenvalue of the sum A + B. ()

g. A positive definite matrix is strictly diagonally dominant. ()

h. Every permutation matrix satisfies $P^2 = I$. ()

i. The condition number of the identity relative at any norm matrix is 0. ()

j. The singular values of A^t are the same as the singular values of A. ()