King Fahd University of Petroleum and Minerals Department of Mathematics MATH 472

Exam-I February 12, 2023

Q	Points
1	23
2	28
3	10
4	23
5	16
Total	100

Q1) Derive a five-point formula to approximate $f^{(4)}(x_0)$ that uses $f(x_0 - 2h)$, $f(x_0 - h)$, $f(x_0)$, $f(x_0 + h)$ and $f(x_0 + 2h)$. Then find the order of the formula. [Hint: consider the expression $Af(x_0)$, $+Bf(x_0 + h) + Cf(x_0 + 2h) + Df(x_0 + 3h)$]

Q2) Consider the nonlinear BVP

$$(y'')^3 = y' + x^2 y + 1$$

$$y(0) = 1, \quad y(4) = 2$$

Let $x_0 = 0$, $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, and $x_4 = 4$ and $h = 1$.
Recall the centered difference approximations.

$$y'(x_i) = \frac{1}{2h} (y(x_{i+1}) - y(x_{i-1})) + O(h^2)$$

- $y''(x_i) = \frac{1}{h^2} (y(x_{i+1}) 2y(x_i) + y(x_{i-1})) + O(h^2)$ a) Write the finite difference approximation to the problem, using the notation $w_i \approx y(x_i)$. This is a system of three nonlinear equations in three unknowns.
- b) If Newton's method is used to solve the nonlinear system in part (a), then in every iteration a linear system needs to be solved. Write this linear system as J Y = rhs
- c) Is the matrix J in part (b) tridiagonal? diagonally dominant? nonsingular?

Q3) Consider the BVP: $y'' = 2 y' - y + x e^x - x$, $0 \le x \le 2, y(0) = 0, y(2) = -4$. Table (1) provide a comparison between the actual solution and the finite difference solutions (FDM) with two different values of h. Calculate the order of the finite difference method which used in this problem.

x	Actual Solution	FDM with $h_1 = 0.1$	FDM with $h_2 = 0.05$
0.0	0	0	0
0.5	-0.5421	-0.5409	-0.5418
1.0	-1.6409	-1.6398	-1.6406
1.5	-3.2199	-3.2214	-3.2203
2.0	-4	-4	-4

Q4) Consider the linear second-order boundary-value problem

$$y'' = p(x) y' + q(x) y$$
 (1)

$$+ r(x)$$

for $a \le x \le b$ with

$$y'(a) = \alpha$$
(2)
$$y(b) = \beta$$
(3)

Let $x_i = a + ih$ for $i = 0, 1, \dots, N + 1$, where h = (b - a)/(N + 1). A finitedifference method results the system of equations:

$$\left(\frac{-w_{i+1}+2w_i-w_{i-1}}{h^2}\right) = p(x_i)\left(\frac{w_{i+1}-w_{i-1}}{2h}\right) + q(x_i)w_i + r(x_i) \quad i = 0, 1, \cdots, N$$
(4)

This system involves w_{-1} .

- a) Represent the first derivative in equation (2) by the centered difference then find a formula for w_{-1} .
- b) Use equation (4) and the formula you obtained in part (a) to assemble the linear system of equations as **A W = rhs**

Q5) Consider the BVP in question 5. Suppose that p, q and r are continuous on [a, b] and q(x) > 0 on [a, b]. Show that the $(N + 1) \times (N + 1)$ matrix obtained in part (5b) is nonsingular under certain condition.