KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DEPARTMENT OF MATHEMATICS

DHAHRAN, SAUDI ARABIA

MATH 503: Mathematics for Data Science Term 211 – Fall 2021

Jaafar Almutawa
Building 5 – Room 203/7
7197
jaafarm@kfupm.edu.sa
UTW:2:00 PM – 3:00 PM or by appointment
Graduate Standing
(3-0-3)

Course Description:

Data transformation using linear algebra, vector spaces, linear transformations, matrix representations, matrix decompositions (eigenvectors, LU, QR, SVD, Cholesky); multivariate calculus for continuous, convex, and non-convex optimization methods; time series construction and visualization, Fourier transformations for time series conversion.

Course Material:

- 1. <u>Course Syllabus:</u> Posted on Blackboard.
- 2. <u>*Textbook:*</u> Mathematics for Machine Learning by Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong.
- 3. *Notes:* Class Notes.

Communication:

For regular announcements, students are advised to check Teams and Blackboard regularly.

Grading:

Activity	Weight
Quizzes	10%
Homeworks	15%
Midterm exam	30%
Projects	5%
Final Exam	40%

Student Learning Outcomes:

Explain the mathematical background to solve data science problems
Identify the calculus, linear algebra, and optimization topics related to each step of a data science problem
Apply computational tools in data science problems
Analyze time series using Fourier transformation
Visualize time series data

Academic Integrity:

All KFUPM policies regarding ethics and academic honesty apply to this course

Academic Integrity: All KFUPM policies regarding ethics apply to this course.

For Important Dates and Academic Calendar, check the Registrar's site: http://regweb.kfupm.edu.sa

SCEDULE and COVERAGE of MATERIAL

Week No. (Dates)	Sections	Topics		
	Chapter 2	Linear Algebra		
Week 1	2.1	Systems of Linear Equations		
Aug. 29- Aug. 31	2.2	Matrices		
	2.3	Solving Systems of Linear Equations		
	2.4	Vector Spaces		
Week 2	2.5	Linear Independence		
Sep. 5- 7	2.6	Basis and Rank		
Week 3	2.7	Linear Mappings		
Sep. 12- 14	2.8	Affine Spaces		
	Chapter 3	Analytic Geometry		
Week 4	3.1	Norms		
Sep. 19- 21	3.2	Inner Products		
	3.3	Lengths and Distances		
	3.4	Angles and Orthogonality		
Sep 23: National Day Holiday				
	3.5	Orthonormal Basis		
Week 5	3.6	Orthogonal Complement		
Sep. 26- Sep. 28	3.7	Inner Product of Functions		
	3.8	Orthogonal Projections		
	3.9	Rotations		
	Chapter 4	Matrix Decomposition		
Week 6	4.1	Determinant and Trace		
<i>Oct.</i> 3- 5	4.2	Eigenvalues and Eigenvectors		
	4.3	Cholesky Decomposition		
Week 7	4.4	Eigendecomposition and Diagonalization		
Oct. 10- 12	4.5	Singular Value Decomposition		
Oct. 17: Student Break				
Week 8	4.6	Matrix Approximation		
Oct. 19	4.7	Matrix Phylogeny		
	Chapter 5	Vector Calculus		
Week 9	51	Differentiation of Univariate Functions		
Oct. 24- 26	5.1	Partial Differentiation and Gradient		
	5.2	Gradients of Vector-Valued Functions		
Week 10	5.0	Gradients of Matrices		
Oct. 31- Nov. 2	5.5	Useful Identities for Computing Gradients		
	5.6	Backpropagation and Automatic Differentiation		
Week 11	5.0	Higher-Order Derivatives		
Nov. 7- 9	5.8	Linearization and Multivariate Taylor Series		
	Chapter 7	Continuous Optimization		
Week 12	7.1	Optimization Using Gradient Descent		
Nov. 14- 16	7.2	Constrained Optimization and Lagrange Multipliers		
Week 13	73	Convoy Optimization		
Nov. 21- 23	7.5	Convex Optimization		
	Midter	<u>m Break Nov. 28- Dec 02</u>		
Week 14				
Dec. 05- 07	Lecture Notes	Fourier Transformation for Time Series		

Week 15 Dec. 12- Dec. 14	Lecture Notes	Fourier Transformation for Time Series		
Week 16 Dec. 19		Review		
Dec 20	20 Normal Thursday Classes; Last day of classes for the term			
Final Exam (Comprehensive): TBA				