MATH 503 (Mathematics for Data Science)

T231 – Midterm Exam (75 points)

Name:

ID

Instructions:

- 1. Mobile phones are not allowed
- 2. Attempt all questions
- 3. Each Multiple-Choice question has 5 points

Multiple Choice (15 points)

Q1. Given the system Ax = b.

Which of the following is true about the least squares' solution \widetilde{x}

- a. \tilde{x} is the solution of the problem $Ax = \tilde{b}$, where \tilde{b} is the orthogonal projection of b into the range (column space) of A
- b. \widetilde{x} exists only if **b** is in the range of **A**
- c. \tilde{x} is the solution of the problem $Ax = \tilde{b}$, where \tilde{b} is the orthogonal projection of b into the null space of A
- d. Least squares do not involve projections

Q2. The vectors
$$\mathbf{x} = \begin{pmatrix} -1 \\ 2 \\ 0 \\ 4 \end{pmatrix}$$
 and $\mathbf{y} = \begin{pmatrix} -2 \\ 0 \\ 2 \\ -2 \end{pmatrix}$ are linearly independent. Define $\mathbf{z} = \mathbf{x} - 0.5\mathbf{y}$.

Let $\mathcal{A} = \{x, y, z\}$. Which of the following is always true?

- a. The set \mathcal{A} spans \mathbb{R}^4
- b. The set \mathcal{A} spans a two-dimensional subspace of \mathbb{R}^3
- c. The set \mathcal{A} spans a two-dimensional subspace of \mathbb{R}^4
- d. The set \mathcal{A} spans a three-dimensional subspace of \mathbb{R}^3
- e. The set \mathcal{A} spans a three-dimensional subspace of \mathbb{R}^4

Q3. Suppose $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix}, \boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}, \boldsymbol{c} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix}$ are all linearly independent from each other, where

the numbers $a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_1, c_2, c_3, c_4$ are all real numbers. Which of the following is always true about the linear system?

$$\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \\ a_4 & b_4 \end{pmatrix} \begin{pmatrix} m_0 \\ m_1 \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix}$$

- a. The system has a unique solution
- b. The system has no solution
- c. The system has infinitely many solutions
- d. The system has exactly three solutions
- e. None of the above

Written Part (60 points)

Q1. (**19 points**) Suppose the matrix below represent a sample from a dataset, with columns corresponding to different data attributes:

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 & 4 \\ 1 & -2 & 0 & 2 \\ 1 & 4 & 3 & 5 \end{pmatrix}$$

- a. Find row echelon form for **A**
- b. Identify the columns that correspond to redundant data attributes
- c. What is the dimension of the vector space spanned by the columns of the matrix (Answer in terms of linear dependence/independence)
- d. How many columns in the matrix are necessary for fitting data

$$Ax = b$$

- e. How many vectors are needed to span the kernel of the matrix
- f. Find a basis for the Im(A) (The range of A)

Q2. (16 points) Consider the following vectors:

$$x_1 = (1, -1, -2, 2)^T$$

 $x_2 = (2, 1, 2, -1)^T$

a. Find the ℓ^1 , ℓ^2 , ℓ^∞ distance between the vectors:

b. Compute the cosine of the angle between x_1 and x_2

Hint: Recall distance between vectors \boldsymbol{x} and \boldsymbol{y} is $\|\boldsymbol{x} - \boldsymbol{y}\|$ in any given norm

Q3. (9 points) For each of these sets, indicate if it is orthogonal, orthonormal or none (show details of your steps)

$$\begin{aligned} \mathcal{A}_1 &= \left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix} \right\} \\ \mathcal{A}_1 &= \left\{ \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\1\\-1 \end{pmatrix} \right\} \\ \mathcal{A}_1 &= \left\{ \frac{1}{2} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix} \right\} \end{aligned}$$

Q4. (16 points) Consider fitting the line:

$$d = m_0 + m_1 x$$

to the data

x	-1	0	1	0
d	2	-1	4	1

a. Formulate the linear system to be solved for the unknowns

- b. Write the linear system in a matrix form
- c. Form the normal equation for the system in (b) above.
- d. Solve the normal system in (d) above.

Good Luck!!! 🕹