Name/ID:

Question 1: Consider the following matrix:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

- a) Use Echelon Form to find a basis for Row(A), and a basis for Col(A).
- b) Find an eigenvector of A corresponding to its eigenvalue $\lambda = 2$.

Question 2: Use eigenpairs to find a decomposition VDV^{-1} for the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}.$$

Question 3: Let A be a matrix whose eigenpairs are given by

$$\lambda_1 = 1, \qquad V_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad \lambda_2 = 2, \qquad V_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Find:

a) the matrix A, b) the matrix e^A

<u>Question 4</u>: An eigenpair of a nonsingular matrix A is $\lambda = \pi$, $V = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$.

Find an eigenpair for: a) A^{-1} b) sin A

Question 5: Use the Least-Squares Method to find the best-fit function of the form

$$f(x) = a + bx^2 + x^3$$

for the points P(0, 2), R(-1, 0), and Q(1, 4).

Question 6: Let *L* be a lower triangular matrix of order *N*, and whose diagonal elements are ones. Find the total number of arithmetic operations for finding for solving the system LX = b.

Question 7: Enjoy the following interesting little questions:

a) Let $V \in \mathbb{R}^3$ a column vector, where $V \neq O$. Find $Rank(VV^T)$.

b) Let $W \in \mathbb{R}^n$. Find the number of arithmetic operations to compute $(W^T W)^{100}$.

- c) A matrix $A_{60\times 20}$ has exactly 10 linearly independent columns.
 - Then, A has exactly how many linearly independent rows?
 - Is $A^T A$ invertible in this case?
- d) Let *B* be a 1000×40 matrix. Then, the matrix $B^T B$ is invertible (nonsingular) if Rank(A) = ?
- e) If $A = A^{-1}$, then what can be concluded about A?