King Fahd University of Petroleum and Minerals Department of Mathematics & Statistics MATH 503 Syllabus, Term 241

Code: MATH 503

Title: Mathematics for Data Science

Credit Hours: 3-0-3

Prerequisite: Graduate Standing

Instructor: Dr. Jamal Al-Smail **E-mail:** jamalhas@kfupm.edu.sa

Office Hours:

Sundays & Tuesdays: 3:00 pm – 4:50 pm Sundays & Tuesdays: 7:40 pm – 8:10 pm

Office: Building 5-407

Course Objectives:

- Review selected topics from multivariate calculus, linear algebra, and optimization related to data science
- Introduce data scientific software, toolboxes, and libraries
- Solve problems in linear algebra and optimization topics related to data science
- Application of mathematical topics to basic neural network design

Course Description:

Selected topics from linear algebra, multivariate calculus, and optimization for Data Science with an emphasis on the implementation using numerical and symbolic software, toolboxes, and libraries for data science like NumPy, SciPy, Pandas, SymPy. Topics include data transformation using linear algebra, vector spaces, linear transformations, matrix representations, matrix decompositions (eigenvectors, LU, QR, SVD, Cholesky); multivariate calculus for continuous, convex, and non-convex optimization methods; basic neural network design.

Textbook:

Deisenroth et al, Mathematics for Machine Learning, 2021 (Main reference).

Learning Outcomes:

- Explain the mathematical background to solve data science problems
- Identify the calculus, linear algebra, and optimization topics related to each step of a data science problem
- Apply computational tools in data science problems
- Application of mathematical tools to neural network design

References:

- 1. Charu C. Aggarwal, Linear Algebra and Optimization for Machine Learning, 2020.
- 2. Thomas Nield, Essential Math for Data Science, 2022

Grading Policy:

Group Class Activities (10%), Group Assignments (10%) Team Projects and Poster Sessions (15%), Two Articles and Presentations (10%), Attendance (5%), Exam1 (10%), Exam2 (10%), Final Exam (30%)

Attendance: Attendance is a University Requirement. A DN grade is rewarded after accumulating 6 unexcused absences.

Academic Integrity: All KFUPM policies regarding ethics apply to this course.

Course Outline:

Weeks	Reference	Topics	
1	Chapter 1	Finding Words for Intuition	
		 Picture of Data Analytics – Math – Machine Learning 	
		Data as vectors/matrices	
	Chapter 2	Linear Algebra	
	2.1-2.2	Matrices and algebra of matrices	
		Systems of Linear Equations	
		With a brief motivation (Linear Regression case study)	
2	Chapter 2	Linear Algebra	
	2.4	Vector Spaces	
	2.5-2.6	Understanding Solvability of Systems via:	
		Linear Independence	
		Basis and Rank	
3	2.3	Solving Systems of Linear Equations	
		Hands-on Illustration (Elementary Computation):	
		Using Numpy and Scipy to	
		 solve linear systems 	
		Check rank of matrix	
		 Illustrate with scipy the challenges in solving rank- 	
		deficient problems	
		Motivate the idea of approximate solution to linear	
		systems	
4	Chapter 2 (cont.)	Linear Mappings	
	3.1-3.4	Analytic Geometry	
		Norms	
		Inner Products	
		Lengths and Distances	
		Angles and Orthogonality	
		Code Illustration:	
		 Compute matrix and vector norms in numpy (elementary task) 	
		(elementary task)	
		Use the knowledge of lengths and distances to	
		implement, using Numpy and Scipy, the k Nearest	
		Neighbor algorithm.	
		Neighbor digorithm.	
		Goal: Sections 3.1, 3.2, 3.3 and 3.4, which for the basis of	
		kNN classifier.	
5-6	3.5-3.9	Orthonormal Basis	
	0.3 0.3	Orthogonal Complement	
		Inner Product of Functions	
		Orthogonal Projections	
		Rotations	
		Code Illustration:	
		Using Numpy and Scipy to implement least square	
		approximation for fitting data to a straight line.	
		 Apply LinearRegression in scikit learn to same dataset 	
		The white results and the same respectively and the same respectively.	

7	Chapter 4	Matrix Decomposition		
	4.1-4.3	Determinant and Trace		
		Eigenvalues and Eigenvectors		
		Cholesky Decomposition		
8	4.4-4.5	Eigen-decomposition and Diagonalization		
		Singular Value Decomposition		
		Code Illustration:		
		 Compute Eigenvalues and Eigenvectors in Numpy 		
		 Perform principal component analysis using numpy 		
		and compare with Scikit learn		
		 Perform SVD in Numpy 		
		 Use SVD to solve column-rank deficient problems 		
		(Revisit linear regression for highly-correlated data)		
9	Chapter 5	Vector Calculus		
	5.1-5.3	Differentiation of Univariate Functions		
		Partial Differentiation and Gradient		
		Gradients of Vector-Valued Functions		
10	5.4-5.5	Gradients of Matrices		
		Useful Identities for Computing Gradients		
11	5.6-5.7	Backpropagation and Automatic Differentiation		
		Higher-Order Derivatives		
12	Chapter 7	Continuous Optimization		
	7.1-7.2	Optimization Using Gradient Descent		
		Constrained Optimization and Lagrange Multipliers		
		Code Illustration:		
		Implement the Gradient Descent iteration in python		
		(Requires Numpy Library and for loops)		
13-14	7.3	Convex Optimization		
Week 15		Project Presentation		

Active Learning and Class Activities:

Python programming language will be used to implement computational tasks in this course. Frequently used packages include: Numpy; Scipy; Core python programming constructs (mainly Loops, Masks, and Lists); Scikit Learn.

Highlights of Coding Activities:

Weeks	Topics and Related application	Tasks and Possible Goals
3	Solving Systems of Linear	Hands-on Illustration
	Equations	(Elementary Computation):
		Using Numpy and Scipy to
		 solve linear systems
		 Check rank of matrix
		 Illustrate with scipy the
		challenges in solving
		rank-deficient problems
		Goal: Motivate the idea of
		approximate solution to linear
		systems

4	Vector norms, inner products, lengths and distances Note: Distance between vectors is the building block of the k Nearest Neighbor algorithm	 Compute matrix and vector norms in Numpy (elementary task) Use the knowledge of lengths and distances to implement, using Numpy and Scipy, the k Nearest Neighbor algorithm. Goal: Sections 3.1, 3.2, 3.3 and 3.4, which for the basis of kNN classifier.
6	 Solving Linear system Revisited Fitting curves to data (formally called Regression) 	 Hands-on Illustration: Use Numpy and Scipy to implement least square approximation for fitting data to a straight line. Apply Linear Regression in Scikit learn to same dataset Goal: To illustrate some of the materials in chapters 2 and 3 as forming some of the basis for linear regression.
8	 Eigendecomposition and Diagonalization Singular value decomposition Applications Eigendecomposition together with projections are vital reducing the dimensionality of high-dimensional data Performing regression on highly-correlated data often lead to solving column-rank deficient problems. We use SVD 	Hands-on Illustration: Compute Eigenvalues and Eigenvectors in Numpy (Basic Task) Perform principal component analysis using Numpy and compare with Scikit learn Perform SVD in Numpy Use SVD to solve column-rank deficient problems (Revisit linear regression for highly-correlated data) Each of the above tasks is considered a goal by itself
12	Optimization Using gradient descent.	Hands-on Illustration: • Implement the Gradient Descent iteration in python for finding least square solutions

Note: Many Machine learning	(Requires Numpy
algorithms including linear	Library and for loops)
regression (already covered)	
and Regularization for support	
vector machine use the gradient	
descent iteration for speedy	
approximation	

Important Dates:

• Exam1: Week 6. Exam2: Week 12.

• **Project Proposal**: Week 8.

Article-1: Week 9Article-2: Week 11

• Project Report/Notebook Submission: Week 13

• Project Presentations: Week 14

• Final Exam: Posted on the registrar's website