Questions 1-16: True (A) of False (B)
Q1: Length, weight, and density are all examples of numerical type and ratio measurement scales.
Q2: Examples of measurement levels are categorical and numerical.
Q3: Variables arising from a counting process are called continuous.
Q4: Categorical data, where ordering is not important, are nominal.
Q5: The Second Quartile is always equal to the Median.
Q6: The most common measure of central tendency that is sensitive to extreme values is the Mean.
Q7: When a sample data has a normal distribution, then the measures of central tendency are all equal.
Q8: Measures of variation include Variance and Coefficient of Variation.
Q9: We cannot judge the data distribution from the normalized bar graph with response overlay.
Q10: The impact of a categorical predictor on the target is visualized through a normalized bar graph with response overlay.

Q11: Normalized histograms with response overlay is useful to bin numerical variables.
Q12: Before model evaluation, a data analyst should make that the test data set be balanced.
Q13: Data dredging is an essential step in the EDA phase.
Q14: Resampling is used for balancing the training set.
Q15: When the model is highly nonlinear, a data analyst may need 90% of the data for training the model.
Q16: Data science methodology does not follow the statistical inference approach.
Q17: The measure that shows the variation relative to the mean is the
a) Standard Deviation
b) Variance
c) Mode
d) Coefficient of Variation

Q18: If Median=200, Mode=200, and Mean=120, then the shape of distribution is
a) Symmetric
b) Left-Skewed
c) Right-Skewed
d) Ordinal

Q19: The following Box Plot is

a) Left-Skewed
b) Right-Skewed
c) Symmetric
d) Nominal

Q20: A normally distributed sample covers 99.7% within how many standard deviations from the mean?
a) 1.5
b) 2
c) 2.5
d) 3

Use the given table to answer Q21 to Q23.
Q21: Of invoices with errors, the portion of the Small Amount is
a) $\mathbf{3 0 . 7 7}$
b) $\mathbf{5 . 0 0}$
c) $\mathbf{1 0 . 5 3}$
d) 170

No Errors Total
Errors

Small	170	20	190
Amount			
Medium	100	40	140
Amount			
Large	65	5	70
Amount		$\mathbf{6 5}$	$\mathbf{4 0 0}$
Total	$\mathbf{3 3 5}$	$\mathbf{6 5}$	

Q24: Which piece of code do you include to normalize a Bar-Graph with Response Overlay?
a) crosstab1=pd.crosstab(df['Age'], df['Respose'])
b) crosstab1=crosstab.div(crosstab.sum(1),axis=0)
c) crosstab1=pd.crosstab(df['Age'], df['Respose'],'normalize'=True)
d) crosstab1=crosstab.div(crosstab.sum(1),axis=1)

Q25: The output of: plt.hist([Age_yes, Age_No], bins=10, stacked=True)
a) a normalized histogram with response overlay
b) a non-normalized histogram with repose overlay
c) two histograms with response overlay
d) two normalized histograms with age overlay

Q26: A training set has a binary target with 250-Yes records, and 700-No records. How many Yes-records do you resample in order to have the Yes-records 35% of the rebalanced training set.
a) 120
b) 124
c) 127
d) 136

Q27: The Gini Index used in the CART method is
a) strictly binary
b) non-binary
c) binary and non-binary
d) Enropy

Q28: $H(X)=-\Sigma_{j} p_{j} \log _{2}\left(p_{j}\right)$ is called the
a) Enropy of X
b) Gini Index
c) Information Gain
d) Heaviside function

Q29: The minimum value of $H(X)=-\Sigma_{j} p_{j} \log _{2}\left(p_{j}\right)$ is achieved when values of p_{j} equal to
a) 1 or 2
b) 0 or 1
c) 0.5 or 2
d) 1 or infinity

Q30: Random Forests determines the final classification of a record by considering
a) Multiple trees
b) More nodes
c) More leaf nodes
d) An optimal root node

Q31: A modeling technique that takes several models' output into account to arrive at a single answer is called
a) $\mathbf{C} 5.0$
b) Ensemble
c) Random Forests
d) CART

Q32: Which object sets the number of decision trees in Random Forests to be 20?
a) n_estimators=20
b) num_trees $=\mathbf{2 0}$
c) trees_forests $=\mathbf{2 0}$
d) criterion $=20$

Q33: Given: $T P=30, F P=20, T N=40$, and $\mathrm{FN}=10$, then the accuracy of All_Positive_Model is
a) 30%
b) 40%
c) $\mathbf{5 0 \%}$
d) $\mathbf{6 0 \%}$

Q34: Given: $F P=10, F N=20, T A P=60$, and $T A N=40$, then Specificity \times Sensitivity $=$
a) 75%
b) 66.7%
c) $\mathbf{5 0 \%}$
d) $\mathbf{2 4 . 6 \%}$

Q35: Use the data-driven cost matrix to calculate the profit per record.
a) $3 \$$
b) $2.8 \$$
c) 1.1 \$
d) $0.9 \$$

Wish you a good luck ©

TN=40; cost=0	FP=30; cost=3\$
FN=20; cost=0	TP=10; profit

