Name/ID: Enjoy it ©

Questions 1-15: True (A) of False (B)

Q1: Length, weight, and density are examples of numerical type and interval measurement scales.

Q2: An example of a numerical measurement level is Discrete.

Q3: Variables arising from a counting process are called continuous.

Q4: Categorical data, where ordering is important, are nominal.

Q5: The First Quartile is equal to the 25th percentile.

Q6: The most common measure of central tendency that is less sensitive to outliers is the Mean.

Q7: When a sample data has a perfect normal distribution, then Mean=Median.

Q8: Measures of variation include Range, Variance, Standard Deviation, and Coefficient of Variation.

Q9: A data analyst should make sure that the test data set is balanced to avoid inaccuracies.

Q10: Data Dredging is an essential step in the EDA phase.

Q11: Resampling is a technique used for balancing the training set.

Q12: When the model is highly nonlinear, a data analyst may need 90% of the data for training the model.

Q13: Data science methodology follows the concept of the statistical inference approach.

Q14: High correlations between predictors in linear regression should be avoided.

Q15: The solution of the normal equation is not unique when the coefficient matrix has linearly dependent columns.

Q16: The measure that shows the variation relative to the mean is the

a) Standard Deviation b) Variance

c) Mode

d) Coefficient of Variation

Q17: If Median=200, Mode=200, and Mean=300, then the shape of distribution is

a) Symmetric

b) Left-Skewed

c) Right-Skewed

d) Ordinal

Q18: The following Box Plot is

a) Left-Skewed

b) Right-Skewed

c) Symmetric

d) Nominal

Q19: / mean		ally distrik	outed sam	iple cove	ers 99.7	% within ho	ow many	y standar	d deviation	s from th	e
a)	1.5		b) 2			c) 2.5		d) 3			_
Q20: 0	Of invo	ices with e	errors, the	e percent	tage of	the Small A	mount i	is		No	Error
a)	1	b) 100	c) 25	,	d) 16.	7				Errors	
									Small	300	100
Q21: ⁻	The pro	portion o	f invoices	with no	errors	is			Amount		
a)	50%	b)	75%	c) 83.3	3	d) 500			N 4 o alivers	200	0
									Medium	200	0
									Amount		
		_	-	_		-Yes records es-records 3				-	S-
a)	120		b) 12	24		c) 127			d) 136		
Q23: I	H(X) =	$= -\Sigma_j p_j l \alpha$	$g_2(p_j)$ is	s called t	he						
a)	Enrop	y of X	b) Gi	ni Index		c) Informat	ion Gair	n	d) Heavisid	e functio	n
Q24: ⁻	The mir	nimum va	lue of $H(X)$	$(X) = -\Sigma_{j}$	_j p _j log	$q_2(p_j)$ is ach	nieved v	vhen valu	ies of p_j eq	ual to	
a)	1 or 2		b) 0	or 1		c) 0.5 or 2			d) 1 or infin	ity	
Q26: I	Randon	n Forests	determine	es the fin	al clas	sification of	a record	d by cons	idering		
a)	Multip	ole trees	b) More	nodes	c) Mo	ore leaf node	es	d) An opt	timal root n	iode	
Q27: /		eling Tech	nique, tha	nt takes ii	nto acc	count a num	ber of n	nodels' v	otes for cla	ssificatio	n, is
a)	C5.0		b) Er	semble		c) Decision	Trees		d) CART		

Q28: Which object sets the number of decision trees in Random Forests to be 20?

a)	n_estimators=20	b) num_trees=20	c) trees_forests=20	O d) cı	riterion=20			
Q29:	Given: TP=30, FP=	20, TN=40, and FN=10,	then the Precision o	of All_Positive	e_Model is			
a)	10%	b) 40%	c) 50%		d) 60%			
Q30:	Q30: Given: FP=10, FN=20, TAP=160, and TAN=140, then Specificity×Sensitivity =							
a)	75.2%	b) 81.3%	c) 85.7%		d) 90.1%			
Q31: \	Use the data-drive	en cost matrix to calcula	ate the profit per red	cord.	TN=40;	FP=30;		
		1.33\$ c) 1.50\$			cost=0\$	cost=3\$		
·	,	,	·		FN=10; profit=1\$	TP=10; profit=20\$		
	Modeleen the training a	makes sure that the modest data sets	nodel's results are co	nsistent	'	<u> </u>		
a)	preparation	b) evaluation	c) validation	d) reductio	n			
Q33: '	Which of the mea	sures combines precision	on and recall in a sin	gle measure?	P			
a)	Accuracy	b) Sensitivity	c) <i>F</i> ₁	d) SSE				
Q34:	Using the given ta	ble, the value of net_A is	s equal to			1		
a)	1.3	b) 1.7	c) 1.8	d) 2.1	X1=1	W0A=0.4 W1A=0.3		
Q35:	Given $net_B = 3$, t	hen the output of node	e B is equal to		X2=2	W2A=0.5		
a)	0.81	b) 0.95	c) 0.77	d) 0	.99			
Q36: to	Q36: Let X be standardized data, then the sigmoid value of the mean \overline{X} , that is $f(\overline{X})=rac{1}{1+e^{-\overline{X}}}$ is equal							
a)	0	b) 1	c) 0.5	d) 0.68				
Q37: ⁻	Q37: The behavior of the sigmoid function near $x=0$ is almost							
a)	Linear	b) Highly Nonlinear	r c) Constant	d) Curviline	ear			
Q38: Clustering refers to the grouping of records of								
a)	Similar objects	b) Different objects	s c) Mixed objects	d) N	ormalized o	bjects		

Q39: When using Clustering, there is

a) a target variable k						
	b) no target variable	e c) no data variat	d) no data skewness			
Q40: The number of clusters in the K-Means Clustering Algorithm is						
a) initially 2	b) initially 3	c) initially 5	d) set by the user			
Q41: The initial cluster cent	er locations, in K-M	eans, are				
a) random k	o) the mean	c) 0	d) σ			
Q42: The cluster centroids, in K-Means, are calculated using the						
a) median k	b) mode	c) mean	d) σ			
Q43: A way of predicting	an output variable	e from one or more inp	ut variables is			
A: correlation		C: regression				
B: PCA		D: MSE				
Q44: Data Visualization is	s done using					
A: matplotlib only		C: seaborn only				
B: Graphix		D: both matplotlik	and seaborn			
Q45: In linear regression models, an iterative algorithm that is used to minimize the least squares error is						
A: Normal Equation		0 1-1				
		C: Intercept				
B: PCA		D: Gradient Desc	cent			
B: PCA Q46: The linear regressio equation, $W =$	n coefficients (W)	D: Gradient Desc				
Q46: The linear regressio equation, $W = A: (X^TX)^{-1}X^TY$	n coefficients (W)	D: Gradient Description D: Gradient Description C: $X^{-1}Y$				
Q46: The linear regressio equation, $W =$	n coefficients (W)	D: Gradient Desc				
Q46: The linear regressio equation, $W = A: (X^TX)^{-1}X^TY$		D: Gradient Description of the can be obtained by the can be $C: X^{-1}Y$ $D: (X^TX)^{-1}W$	ne solution of the normal			
Q46: The linear regressio equation, $W = \frac{A: (X^TX)^{-1} X^TY}{B: X^TY}$ Q47: Which of the followir encoding? A: df['Education'].replace	ng transforms a ca	D: Gradient Description D: Gradient Description D: $(X^{-1}Y)$ D: $(X^{T}X)^{-1}W$ ategorical attribute 'Ed	ne solution of the normal lucation' using one hot .one_hot({1:'A',2:'B',3:'C'})			
Q46: The linear regressio equation, $W = \frac{A: (X^TX)^{-1} X^TY}{B: X^TY}$ Q47: Which of the followir encoding?	ng transforms a ca e({1:'A',2:'B',3:'C'})	D: Gradient Description of the can be obtained by the can be obtaine	ne solution of the normal			
Q46: The linear regressio equation, $W = \frac{A: (X^TX)^{-1} X^TY}{B: X^TY}$ Q47: Which of the following encoding? A: df['Education'].replace B:	ng transforms a ca e({1:'A',2:'B',3:'C'}) mns=['Education']	D: Gradient Description of the can be obtained by the can be obtaine	ne solution of the normal lucation' using one hot .one_hot({1:'A',2:'B',3:'C'})			
Q46: The linear regressio equation, $W = \frac{A: (X^TX)^{-1} X^TY}{B: X^TY}$ Q47: Which of the following encoding? A: df['Education'].replace B: pd.get_dummies(df.colure)	ng transforms a ca e({1:'A',2:'B',3:'C'}) mns=['Education'] n model is trained	D: Gradient Description of the can be obtained by the can be obtaine	ucation' using one hot one_hot({1:'A',2:'B',3:'C'}) ,columns=['Education'])			

Q49: Ridge and Lasso Models are imported using

A: sklearn.penalized_model	C: sklearn.linear_model
B: sklearn.regulazor_model	D: sklearn.reduced_model

Q50: In the code: regr = Ridge(alpha=450), the value of alpha sets the

A: regularization coefficient	C: intercept parameter
B: maximum number of iterations	D: number of sample records

Q51: Which code that is used for building training and testing sets is

A: training_testing_builder (X, y,	C: train_test_split (X, y, test_size=0.30)
test_size=0.30)	
B: training_testing_spliter (X, y,	D: training_testing_spliting (X, y,
test_size=0.30)	test_size=0.30)

Q52: MSE or SSE can be used in

A: Lasso Model	C: Linear Regression Model
B: Ridge Model	D: All of the Above

Q53: Classification problems are a type of

A: Supervised Learning	C: PCA Models
B: Unsupervised Learning	D: All of the Above

Q54: Descriptive analysis uses

A: multivariate plots	C: correlations
B: regressions	D: gradient descent iterations

Q55: The correlation of two attributes determines

A: which one should be the target variable	C: the intercept
B: the right choice of the z-score	D: the strength of their linear relationship

Q56: Which of the following is the strongest correlation score?

A: 0.1	C: - 0.95
B: 0.90	D: 0.83

Q57: Which of the following sentences is True about the principal component analysis?

A: It is used for data visualization and	C: It projects the input data into a lower
exploration.	dimensional. linear space
B: It is used to reduce the number of	D: All of the Above.
attributes.	

Q58: Which of the following is True about linear regression?

A: It is used for prediction.	C: It defines a relationship between
	independent and dependent variables.
B: It defines the dependent variable as a	D: All of the Above.
linear function of independent variables.	

Q59: In a single input, single output regression $y = \beta_0 + \beta_1 x$, the parameters (β_0, β_1) refer to

A: (y – intercept, slope)	C: $(x - intercept, correlation)$
B: $(x - intercept, MSE)$	D: (pca_1, pca_2)

Q60: Given that the correlation of the input variable and output variable is negative, then the regression equation has

A: a positive intercept.	C: a positive slope.
B: a negative intercept.	D: a negative slope.