King Fahd University of Petroleum and Minerals Department of Mathematics & Statistics MATH 506 Syllabus, Term 251

Code: MATH 506

Title: Fundamentals of Data Science

Credit Hours: 3-0-3

Prerequisite: Graduate Standing **Instructor:** Dr. Jamal Al-Smail

E-mail: <u>jamalhas@kfupm.edu.sa</u> (use your KFUPM e-mail for communications)

Office Hours: Sundays & Tuesdays & Thursdays, 11:15 – 12:45 pm; Building 5-407

Before and After Class

Objective: The main objective of the course is to

• Introduce the mechanism of the learning process,

• Implement solutions using data scientific software, toolboxes, and libraries.

Description: All aspects of the data science pipeline using the software, toolboxes, and libraries like NumPy, SciPy, Pandas, SymPy, Matplotlib, and Seaborn: Data acquisition, cleaning, handling missing data, EDA, visualization, feature engineering, modeling, model evaluation, bias-variance tradeoff, sampling, training, testing, experimenting with a classical model.

Learning Outcomes: Upon completion of the course, students should be able to:

- Distinguish data science tasks.
- Prepare data for analysis.
- Describe the learning process.
- Build a model in a computer environment.

Textbook [TB]: Data Science using Python and R by C. Larose ad D. Larose, Wiley, 2019.

Supplementary Material:

- 1. [R1] A Hands-On Introduction to Data Science, by Chirag Shah, Cambridge University Press
- **2.** [R2] Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications by Igual, Laura, Seguí, Santi, Springer

Grading Policy:

Group Assignments (10%), Data Science Project (20%) Mathematical Methods for Data Science (10%) Two IBM Certificates on Data Science (10%) Exam1 (10%), Exam2 (10%), Final Exam (30%)

Attendance: Attendance is a University Requirement. A DN grade will be awarded to any student accumulating 6 unexcused absences.

Academic Integrity: All KFUPM policies regarding ethics apply to this course.

Course Outline:

Weeks	Topics	Reference
1	Introduction to Data Science	Ch 1 [TB], [R1], [R2]
	Data Science Methodologies and Tasks	
	Implementation:	
	A Comprehensive Example in Data Science	
2-3	Toolboxes for Data Scientists	Ch 2.1, 2.2 [TB]
	Python, IBM SPSS Statistics, Libraries	Ch 5.1-5.3 [R1]
	Implementation:	Ch 2.1-2.6 [R1]
	Basics on using Python and Libraries,	
	Basics on using IBM SPSS Statistics and Libraries	
4-5	Data Preparation	Ch 2 [R1]
	Types, Sources, Formats, Pre-Processing	Ch 3 [TB]
	Implementation:	
	Data Preparation using IBM SPSS Statistics,	
	Data Preparation using IBM SPSS Modeler	
6-7	Data Analysis Techniques	Ch 4 [TB]
	Descriptive, Multivariate Analysis, Feature Engineering	Ch 3 [R1]
	Implementation:	Ch 3 [R2]
	Feature Engineering using IBM SPSS Statistics	
8	Data Visualization	External Notes
	Implementation:	
	Data Visualization using Python,	
	Data Visualization using IBM SPSS Statistics	
9-10-11	Introduction to Modeling	Ch 5, Ch 11[TB]
	Datasets, Machine Learning, Modeling,	Ch 8.1 – 8.3, Ch 9.4 [R1]
	Training-Testing-Validation, Regression, Classification	Ch 6.1 [R2]
	Implementation:	
	Data Science Applications using IBM SPSS Statistics,	
	Data Science Applications using IBM SPSS Modeler	
12-13	Evaluating Models	Ch 7 [TB]
	Metrics, Cross-Validation, Hyperparameters	Ch 12.4 [R1]
	Implementation:	
	Model Validation using Python and IBM SPSS Statistics	
14	Automating Models	External Notes
	Building Pipelines, Joining Pipelines, Saving Models	
	Implementation:	
	Building Pipelines using IBM SPSS Statistics	
15	Project Presentations	
	IBM SPSS Modeler Certifications	

Important Dates:

Exam1: Week 5(Tuesday); **Exam2**: Week 10(Tuesday)

Final Exam: During Final Exams Week. Check the registrar's website.

Data Science Project Proposal: Week 6 (Sunday)

Project Poster and Report Submission: Week 14 (Tuesday)
Project Presentations: Week 15 (Sunday and Tuesday)
IBM Data Science Certificates: Week 12 (Thursday)