King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics Math 521: General Topology First Exam, Fall Semester 231 (120 minutes) Prof. Jawad Abuihlail

Remark: Solve 6 questions including Q7. Show full details.

Q1. (16 points)

(a) Find the maximal simply ordered subsets of \mathbb{R}^2 with the partial ordering

 $(x_0, y_0) \prec (x_1, y_1)$ if $x_0 < x_1$ and $y_0 = y_1$.

(b) Show that (-1, 1) and \mathbb{R} have the same order type.

Q2. (16 points)

(a) Show that $(\mathbb{R} \times \mathbb{R})_{lex} \simeq \mathbb{R}_d \times \mathbb{R}$.

(b) Is $(\mathbb{R} \times \mathbb{R})_{lex}$ metrizable? Clarify.

Q3. (16 Points) Let X be an ordered set considered with the order topology.

(a) Show that if $Y \subset X$ is convex in X, then the order topology on Y is the same as the topology that Y inherits as a subspace of X.

(b) Give an example of a (*non-convex*) subset $Y \subset X$ for which the subspace topology is *strictly* finer than the order topology on Y.

Q4. (16 points)

(a) Show that if $(x_n)_{n \in \mathbb{Z}_+}$ is a sequence for which the image $\{x_n \mid n \in \mathbb{Z}_+\}$ is infinite, then $(x_n)_{n \in \mathbb{Z}_+}$ converges to every point a in \mathbb{R} considered with the finite complement topology.

(b) Prove the Pasting Lemma: Let $X = A \cup B$, where A and B are closed in X. Let $f: A \to Y$ and $g: B \to Y$ be continuous with f(x) = g(x) for every $x \in A \cap B$. Show that

$$h(x) = \begin{cases} f(x), & x \in A \\ g(x), & x \in B \end{cases}$$

is continuous.

Q5. (16 points) Let Y be an ordered set with the order topology and let $f, g : X \to Y$ be continuous.

(a) Show that $\{x \in X \mid f(x) \le g(x)\}$ is closed in X.

(b) Show that $h(x) = \min\{f(x), g(x)\}$ is continuous (Hint: Use the *Pasting Lemma*).

Q6. (16 points) Let Y be the quotient space obtained from \mathbb{R}_K by collapsing set $K = \{\frac{1}{n} \mid n \in \mathbb{Z}_+\}$ to a point and $\rho : \mathbb{R}_K \to Y$ be the quotient map. Show that (a) Y is T_1 but not T_2 .

(b) $\rho \times \rho : \mathbb{R}_K \times \mathbb{R}_K \to Y \times Y$ is *not* a the quotient map.

Q7. (20 points) Prove or disprove:

(a) The cartesian product of countable sets is countable.

(b) $f : \mathbb{R} \to \mathbb{R}^w$, $f(t) = (t, t, t, \cdots)$ is continuous, where \mathbb{R}^w has the box topology.

(c) If X is an ordered set with the order topology, then (a, b) = [a, b] for any $a, b \in X$. (d) $\mathbb{R}_K \subsetneq \mathbb{R}_u$.

Bonus (5 points): Give a metric space (X, d) and a ball of radius r which strictly contains some ball of a strictly bigger radius R > r.

GOOD LUCK