King Fahd University of Petroleum \& Minerals
 Department of Mathematics and Statistics
 Math 521: General Topology
 First Exam, Fall Semester 231 (120 minutes)

Prof. Jawad Abuihlail

Remark: Solve 6 questions including Q7. Show full details.
Q1. (16 points)
(a) Find the maximal simply ordered subsets of \mathbb{R}^{2} with the partial ordering

$$
\left(x_{0}, y_{0}\right) \prec\left(x_{1}, y_{1}\right) \text { if } x_{0}<x_{1} \text { and } y_{0}=y_{1} .
$$

(b) Show that $(-1,1)$ and \mathbb{R} have the same order type.

Q2. (16 points)
(a) Show that $(\mathbb{R} \times \mathbb{R})_{\text {lex }} \simeq \mathbb{R}_{d} \times \mathbb{R}$.
(b) Is $(\mathbb{R} \times \mathbb{R})_{\text {lex }}$ metrizable? Clarify.

Q3. (16 Points) Let X be an ordered set considered with the order topology.
(a) Show that if $Y \subset X$ is convex in X, then the order topology on Y is the same as the topology that Y inherits as a subspace of X.
(b) Give an example of a (non-convex) subset $Y \subset X$ for which the subspace topology is strictly finer than the order topology on Y.

Q4. (16 points)
(a) Show that if $\left(x_{n}\right)_{n \in \mathbb{Z}_{+}}$is a sequence for which the image $\left\{x_{n} \mid n \in \mathbb{Z}_{+}\right\}$is infinite, then $\left(x_{n}\right)_{n \in \mathbb{Z}_{+}}$converges to every point a in \mathbb{R} considered with the finite complement topology.
(b) Prove the Pasting Lemma: Let $X=A \cup B$, where A and B are closed in X. Let $f: A \rightarrow Y$ and $g: B \rightarrow Y$ be continuous with $f(x)=g(x)$ for every $x \in A \cap B$. Show that

$$
h(x)= \begin{cases}f(x), & x \in A \\ g(x), & x \in B\end{cases}
$$

is continuous.
Q5. (16 points) Let Y be an ordered set with the order topology and let $f, g: X \rightarrow Y$ be continuous.
(a) Show that $\{x \in X \mid f(x) \leq g(x)\}$ is closed in X.
(b) Show that $h(x)=\min \{f(x), g(x)\}$ is continuous (Hint: Use the Pasting Lemma).

Q6. (16 points) Let Y be the quotient space obtained from \mathbb{R}_{K} by collapsing set $K=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{Z}_{+}\right\}$to a point and $\rho: \mathbb{R}_{K} \rightarrow Y$ be the quotient map. Show that
(a) Y is T_{1} but not T_{2}.
(b) $\rho \times \rho: \mathbb{R}_{K} \times \mathbb{R}_{K} \rightarrow Y \times Y$ is not a the quotient map.

Q7. (20 points) Prove or disprove:
(a) The cartesian product of countable sets is countable.
(b) $f: \mathbb{R} \rightarrow \mathbb{R}^{w}, f(t)=(t, t, t, \cdots)$ is continuous, where \mathbb{R}^{w} has the box topology.
(c) If X is an ordered set with the order topology, then $\overline{(a, b)}=[a, b]$ for any $a, b \in X$.
(d) $\mathbb{R}_{K} \varsubsetneqq \mathbb{R}_{u}$.

Bonus (5 points): Give a metric space (X, d) and a ball of radius r which strictly contains some ball of a strictly bigger radius $R>r$.

GOOD LUCK

