King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics Math 521: General Topology Second Exam, Fall Semester 231 (120 minutes) Prof. Jawad Abuihlail

Remark: Solve 6 questions including Q7 & Q8. Show full details.

Q1. (16 points) Let $\{X_{\alpha}\}_{\alpha \in J}$ be an indexed family of connected spaces, consider $X = \prod_{\alpha \in J} X_{\alpha}$ with the *product topology* and pick a fixed point $(a_{\alpha})_{\alpha \in J} \in X$. For any finite subset K of J, define

$$X_K := \{ (x_\alpha)_{\alpha \in J} \mid x_\alpha = a_\alpha \text{ for all } \alpha \notin K \}.$$

Show that

(a) X_K is connected for any any finite subset K of J and $Y := \bigcup_{\substack{K \subseteq J \\ \text{finite}}} X_K$ is connected.

(b) $X = \overline{Y}$ and X is connected.

Q2. (16 points) Show that

(a) Every path-connected topological space is connected.

(b) The topologist's sin function \overline{S} , where

$$S = \{ (x, \sin(\frac{1}{x}) \mid \ 0 < x \le 1 \},$$

is connected but *not* path-connected.

Q3. (16 points) Consider the lower limit topology \mathbb{R}_l .

(a) Show that the set of path-connected components of \mathbb{R}_l is $\mathcal{C} = \{\{a\} \mid a \in \mathbb{R}\}$.

(b) Characterize the continuous maps $f : \mathbb{R} \longrightarrow \mathbb{R}_l$.

Q4. (16 points) Show that

(a) the one point compactification of \mathbb{R} is homeomorphic with S^1 .

(b) the one point compactification of \mathbb{Z}_+ is homeomorphic with $\{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{Z}_+\} \subset \mathbb{R}$.

Hint: If $f : X \longrightarrow Y$ is a homeomorphism of locally compact Hausdorff topological spaces, then f extends to a homeomorphism of their one-point compactifications.

Q5. (16 points) Let $p: X \longrightarrow Y$ be a *perfect map* (a closed continuous surjective map such that $p^{-1}(\{y\})$ is compact for each y in Y). Show that

(a) If X is regular, then Y is regular.

(b) If X is locally compact, the Y is locally compact.

Q6. (16 points) Show that

(a) Every locally compact Hausdorff topological space is regular.

(b) \mathbb{R}^{ω} is normal with the uniform topology.

Q7. (16 points) Consider I = [0, 1]. Show that

- (a) $I \subset \mathbb{R}$ is compact.
- (b) $I \subset \mathbb{R}_c$ is *not* compact.
- (c) $I \subset \mathbb{R}_K$ is *not* compact.
- (d) $I \subset \mathbb{R}_l$ is *not* limit point compact.

Q8. (20 points) Prove or disprove:

- (a) \mathbb{R}_l is metrizable.
- (b) A closed subspace of a normal topological space is normal.
- (c) Any finite product of Lindelöf topological spaces is Lindelöf.
- (d) Every locally compact Hausdorff topological space is completely regular.

GOOD LUCK