King Fahd University of Petroleum & Minerals

Department of Mathematics and Statistics

Math 521: General Topology

Final Exam, Fall Semester 231 (180 minutes)

Prof. Jawad Abuihlail

Remark: Solve 7 questions including Q8 & Q9. Show full details.

Q1. (12 points) Let X be a Hausdorff locally compact topological space and let $Y := X \cup \{\infty\}$ be its one-point compactification.

(a) Show that

X is second countable \iff Y is second countable \iff Y is metrizable.

(b) Give and example to show that the equivalent properties of X in (a) are not equivalent to "X is metrizable".

Q2. (12 points) A topological space X is *locally metrizable* iff each point x of X has a neighborhood that is metrizable in the subspace topology. [Hint: Urysohn Metrization Theorem: Every regular second countable space is metrizable.]

(a) Show that a compact Hausdorff locally metrizable space X is metrizable.

(b) Show that a Lindelöf regular locally metrizable space X is metrizable.

Q3. (12 points) Let X be a topological space. Show that

(a) X is a Lindelöf if and only if the collection of *closed* subsets of X has the *countable intersection property*.

(b) X has a metrizable compactification if and only if X is metrizable and second countable.

Q4. (12 points) Let X be a topological space and $\beta(X)$ its Stone-Cech compactification.

(a) Show that if c(X) is an *arbitrary* compactification of X, then there is a *surjective* closed continuous map $g: \beta(X) \longrightarrow c(X)$ that equals the identity on X.

(b) Assume that X is completely regular. Show that

X is connected $\iff \beta(X)$ is connected.

Q5. (12 points) Let X be a topological space and $\beta(X)$ its Stone-Cech compactification. Show that

(a) If X is discrete, then $\beta(X)$ is totally disconnected.

(b) If X is completely regular and non-compact, then $\beta(X)$ is not metrizable.

Q6. (12 points) Let (X, d) be a complete metric space. Show that (a) If $f: X \longrightarrow X$ is a *contraction*, i.e. there is $\alpha < 1$, such that for all $x, y \in X$:

$$d(f(x), f(y)) \le \alpha d(x, y),$$

then there exists a *unique* point $z \in X$ such that f(z) = z.

(b) A subset $S \subset X$ is closed if and only if S (with the subspace topology) is complete.

Q7. (12 points) Let (Y, d) be a metric space, X a topological space and $\mathfrak{F} \subset \mathfrak{C}(X, Y)$. (a) If \mathfrak{F} is finite, then \mathfrak{F} is equicontinuous.

(b) Suppose $\{f_n\}_{n\in\mathbb{Z}_+}$ is a sequence of equicontinuous functions on a compact subset $K \subset \mathbb{R}$. Show that: if $\{f_n\}_{n\in\mathbb{Z}_+}$ converges *pointwise* on K, then $\{f_n\}_{n\in\mathbb{Z}_+}$ converges *uniformly* on K.

Q8. (20 points) Prove or disprove:

(a) Every Hausdorff second countable space is metrizable.

(b) Completeness of metric spaces is a topological property.

(c) If X is a completely regular space and Y_1, Y_2 are two compactifications of X having the *extension property*: (every bounded continuous map $f: X \longrightarrow \mathbb{R}$ extends uniquely to a continuous map $g_1: Y_1 \longrightarrow \mathbb{R}$ and uniquely to a continuous map $g_2: Y_2 \longrightarrow \mathbb{R}$), then Y_1 and Y_2 are equivalent.

(d) If X is compact, then every sequence $\{f_n : X \longrightarrow \mathbb{R}\}_{n \in \mathbb{Z}_+}$ of pointwise bounded continuous functions has a uniformly convergent subsequence.

Q9. (20 points) In the following table, insert ($\sqrt{}$) against each Property **P** that:

(a) passes from a topological space having Property \mathbf{P} (in the first column) to all of its subspaces, continuous images;

(b) passes from a collection of topological spaces each of which has Property \mathbf{P} (in the first column) to finite products, countable products, arbitrary products;

(c) is satisfied by all metric spaces;

(d) is satisfied by all compact Hausdorff spaces.

	T_3	$T_{3\frac{1}{2}}$	T_4	Lindelöf	1st countable	2nd countable	metrizable	connected
subspaces								
continuous images								
finite products								
countable products								
arbitrary products								
metric spaces								
compact Hausdorff								

Bonus (5 points): Give a *geometric description* of the Alexandroff (one-point) compactification of the subspace of $X \subset \mathbb{R}$ (with the standard topology) given by

 $X = (0,1) \cup (1,2) \cup (2,3) \cup (3,4) \cup (4,5) \cup (5,6) \cup (6,7) \cup (7,8).$

GOOD LUCK