King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics Sciences

Math 525 - Graph Theory

Semester – 211

Exam II	Dr. M. Z. Abu-Sbeih	November 9, 2021
Student No.:	Name:	

Show all your work. No credits for answers without justification.

Write neatly and eligibly. You may loose points for messy work.

There are 8 problems.

Question	Grade	Out of
1		15
2		15
3		10
4		15
5		15
6		10
7		10
8		10
Total		100

1) (a) State Mengers Theorem for undirected graph.

(b) Let G be a $k \ge 2$ connected graph and let $S = \{v_1, v_2, \dots, v_k\}$ be a set of k vertices. If $u \in V(G) - S$, then there are k paths $u - v_i$ $(i = 1, \dots, k)$ with only the vertex u in common.

Proof : Let us consider a graph G' such that $V(G') = V(G) \cup \{x\}$ and $E(G') = E(G) \cup \{xy | y \in S\}$. Then G' is k-connected graph. By Menger's theorem there exist k (internal) vertex disjoint u - x path in G'. These path must passes through vertices of S. Since |S| = k, every path contain exactly one element from S. Consider corresponding path in G gives required k paths. \Box

2) (a) State Kuratowski's Theorem.

A graph is planar if and only if it contains no subdivision of either K_5 or $K_{3,3}$.

(b) Let G be a plane graph of order n and size m. If the complement \overline{G} is isomorphic to its dual G^* , find n.

Solution:

Assume that G has r faces. Now $|V(G)| = |V(\overline{G})| = |V(G^*)| = n$. Also we have r = n. Since

$$\left|E\left(\overline{G}\right)\right| = \left|E(G^*)\right|$$

We have $\frac{n(n-1)}{2} - m = m$ or $m = \frac{n(n-1)}{4}$. Substituting in Euler's formula $2 = n - m + r = n - \frac{n(n-1)}{4} + n = 2n - \frac{n(n-1)}{4}$. Simplify $n^2 - 9n + 8 = 0$ which implies (n - 1)(n - 8) = 0. Thus n = 1 and n = 8.

Find the number of regions (faces) *r* in a maximal outerplanar graph *G* of order *n* ≥ 3.

Solution:

Let the size of G be m. Since the graph is maximal outerplanar, all interior regions are triangles except the outer faces, which is a cycle of length n. Thus

$$3(r-1) + n = 2m$$

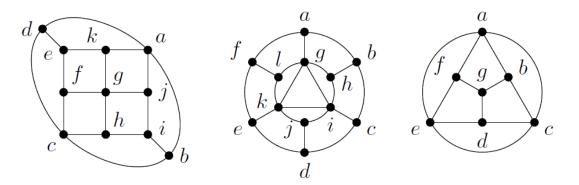
Using Euler's formula

2 = n - m + r or 4 = 2n - 2m + 2rAnd substituting for 2m we get 4 = 2n - 2m + 2r = 2n - [3(r - 1) + n] + 2rSimplify: 4 = 2n - 3r + 3 - n + 2r = n - r + 3Thus n - r = 1 or r = n - 1

4) Show that the complement of any planar graph *G* with at least 11 vertices is nonplanar.Solution:

A planar graph with *n* vertices has at most 3n - 6 edges. Hence each planar graph with 11 vertices has at most 27 edges. Since K_{11} has 55 edges, the complement of each planar subgraph has at least 28 edges and is non-planar. For n(G) > 11, any induced subgraph with 11 vertices shows that \overline{G} is nonplanar. There is also no planar graph on 9 or 10 vertices having a planar complement, but the easy counting argument here is not strong enough to prove that.

5) Determine the chromatic number of each of the following graphs:



Solution:

- i. The graph has no odd cycles, so $\chi(G) = 2$. (A 2-colouring is easily found (eg., *a*, *c*, *e*, *g*, *i* white, *b*, *d*, *f*, *h*, *j*, *k* black).
- ii. Since there are triangles, $\chi(G) \ge 3$. We can find a 3-colouring (eg., *a*, *d*, *h*, *k* red; *b*, *e*, *i*, *l* white; *c*, *f*, *g*, *j* blue), so $\chi(G) = 3$.
- iii. Since there are triangles, $(eg.,\{a, b, c\}), \chi(G) \ge 3$, but is G 3-colourable? If so, without loss of generality let a, b, c be red, white, blue respectively. Then e, adjacent to both a and c, must be white. Also f, adjacent to both a and e, must be blue.

Also *d*, adjacent to both *c* and *e*, must be red. Then, however, a fourth color is needed for *g*, which is adjacent to *b*, *d* and *f*. Hence $\chi(G) = 4$.

6) Show that a simple connected planar graph with 17 edges and 10 vertices cannot be properly colored with two colors.

(Hint: Show that such a graph must contain a triangle.)

Solution:

Suppose such a graph has no triangles. Then, since it is not a tree, each face must be bounded by at least 4 edges, and so $4f \le 2e$, or $2f \le e$. However, by Euler's formula, f = 2 - v + e = 2 - 10 + 17 = 9, so 2f = 2(9) < 17 = e. A contradiction. Hence the graph must have at least one triangle and so is not 2-colourable.

7) (a) Show that if G is a simple planar graph of order n and size m then $m \le 3n - 6$.

(b) Find $cr(K_6)$ (the crossing number of the complete graph on 6 vertices).

Solution:

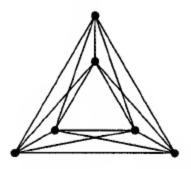
(a) Since each face is bounded by at least 3 edges, if f is the no of regions, then $3f \le 2m$. Substituting in Euler's formula,

$$2 = n - m + f$$

We get $6 = 3n - 3m + 3f \le 3n - 3m + 2m = 3n - m$

That is $m \leq 3n - 6$.

(b) A simple graph on 6 vertices must have at most 3n - 6 = 12 edges by part (a). But K_6 has 15 edges, then $cr(K_6) \ge 15 - 12 = 3$. The figure below shows an embedding of K_6 with three crossings. Hence $cr(K_6) = 3$.



8) Show that every even planar graph *G* is 2-face colorable. **Solution:**

We know that if C_1 and C_2 are two even cycles then, $C_1 \Delta C_2$ is even. To prove the question, it is enough to show that the dual G^* is two colorable (or bipartite graph). Now since G is even, then each face of the dual is even cycle. However, the faces of the dual form a basis for the cycle space of the dual graph. This implies that any cycle of G^* is the symmetric difference of face cycles, i.e. of even cycles and so is even. Thus, the dual graph is a bipartite graph and can be colored by 2 colors.