King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics Sciences

Math 525 - Graph Theory

Semester – 211

Show all your work. No credits for answers without justification.

Write neatly and eligibly. You may loose points for messy work.

There are 8 problems.

1) (a) State Mengers Theorem for undirected graph.

(b) Let G be a $k \ge 2$ connected graph and let $S = \{v_1, v_2, \dots, v_k\}$ be a set of k vertices. If $u \in V(G) - S$, then there are *k* paths $u - v_i$ ($i = 1, \dots, k$) with only the vertex *u* in common.

Let us consider a graph G' such that $V(G') = V(G) \cup \{x\}$ and $Proof:$ $E(G') = E(G) \cup \{xy | y \in S\}$. Then G' is k-connected graph. By Menger's theorem there exist k (internal) vertex disjoint $u - x$ path in G'. These path must passes through vertices of S. Since $|S| = k$, every path contain exactly one element from S. Consider corresponding path in G gives required k paths. □

2) (a) State Kuratowski's Theorem.

A graph is planar if and only if it contains no subdivision of either K_5 or $K_{3,3}$.

(b) Let *G* be a plane graph of order *n* and size *m*. If the complement \overline{G} is isomorphic to its dual G^* , find *n*.

Solution:

Assume that G has *r* faces. Now $|V(G)| = |V(\overline{G})| = |V(G^*)| = n$. Also we have $r = n$. Since

$$
|E(\overline{G})|=|E(G^*)|
$$

We have $\frac{n(n-1)}{2} - m = m$ or $m = \frac{n(n-1)}{4}$ $\frac{(-1)}{4}$. Substituting in Euler's formula $2 = n - m + r = n - \frac{n(n-1)}{4}$ $\frac{n-1}{4} + n = 2n - \frac{n(n-1)}{4}$ $\frac{1}{4}$. Simplify $n^2 - 9n + 8 = 0$ which implies $(n - 1)(n - 8) = 0$. Thus $n = 1$ and $n = 8$.

3) Find the number of regions (faces) *r* in a maximal outerplanar graph *G* of order $n \geq 3$.

Solution:

Let the size of *G* be *m*. Since the graph is maximal outerplanar, all interior regions are triangles except the outer faces, which is a cycle of length *n*. Thus

$$
3(r-1)+n=2m
$$

Using Euler's formula

 $2 = n - m + r$ or $4 = 2n - 2m + 2r$ And substituting for $2m$ we get $4 = 2n - 2m + 2r = 2n - [3(r - 1) + n] + 2r$ Simplify: $4 = 2n - 3r + 3 - n + 2r = n - r + 3$ Thus $n - r = 1$ or $r = n - 1$

4) Show that the complement of any planar graph *G* with at least 11 vertices is nonplanar. **Solution:**

A planar graph with *n* vertices has at most $3n - 6$ edges. Hence each planar graph with 11 vertices has at most 27 edges. Since K_{11} has 55 edges, the complement of each planar subgraph has at least 28 edges and is non-planar. For $n(G) > 11$, any induced subgraph with 11 vertices shows that \overline{G} is nonplanar. There is also no planar graph on 9 or 10 vertices having a planar complement, but the easy counting argument here is not strong enough to prove that.

5) Determine the chromatic number of each of the following graphs:

Solution:

- The graph has no odd cycles, so $\chi(G) = 2$. (A 2-colouring is easily found i. (eg., a , c , e , g , i white, b , d , f , h , j , k black).
- Since there are triangles, $\chi(G) \geq 3$. We can find a 3-colouring (eg., a, d, ii. h, k red; b, e, i, l white; c, f, g, i blue), so $\chi(G) = 3$.
- Since there are triangles, (eg., {a, b, c}), $\chi(G) \geq 3$, but is G 3-colourable? iii. If so, without loss of generality let a, b, c be red, white, blue respectively. Then e, adjacent to both a and c, must be white. Also f, adjacent to both a and e, must be blue.

Also d , adjacent to both c and e , must be red. Then, however, a fourth color is needed for g, which is adjacent to b, d and f. Hence $\chi(G) = 4$.

6) Show that a simple connected planar graph with 17 edges and 10 vertices cannot be properly colored with two colors.

(Hint: Show that such a graph must contain a triangle.)

Solution:

Suppose such a graph has no triangles. Then, since it is not a tree, each face must be bounded by at least 4 edges, and so $4f \le 2e$, or $2f \le e$. However, by Euler's formula, $f = 2 - v + e = 2 - 10 + 17 = 9$, so $2f =$ $2(9) < 17 = e$. A contradiction. Hence the graph must have at least one triangle and so is not 2-colourable.

7) (a) Show that if G is a simple planar graph of order *n* and size *m* then $m \leq$ $3n - 6$.

(b) Find $cr(K_6)$ (the crossing number of the complete graph on 6 vertices).

Solution:

(a) Since each face is bounded by at least 3 edges, if *f* is the no of regions, then $3f \leq 2m$. Substituting in Euler's formula,

$$
2 = n - m + f
$$

We get $6 = 3n - 3m + 3f \leq 3n - 3m + 2m = 3n - m$

That is $m \leq 3n - 6$.

(b) A simple graph on 6 vertices must have at most $3n - 6 = 12$ edges by part (a). But K_6 has 15 edges, then $cr(K_6) \ge 15 - 12 = 3$. The figure bellow shows an embedding of K_6 with three crossings. Hence $cr(K_6) = 3$.

8) Show that every even planar graph *G* is 2-face colorable. **Solution:**

We know that if C_1 and C_2 are two even cycles then, $C_1 \Delta C_2$ is even. To prove the question, it is enough to show that the dual G^* is two colorable (or bipartite graph). Now since G is even, then each face of the dual is even cycle. However, the faces of the dual form a basis for the cycle space of the dual graph. This implies that any cycle of G^* is the symmetric difference of face cycles, i.e. of even cycles and so is even. Thus, the dual graph is a bipartite graph and can be colored by 2 colors.