MATH 531 - Major Exam 2

KFUPM, Department of Mathematics and Statistics

Kroumi Dhaker, Term 211

1 Exercise 1(6+7+7 points)

1. Let $f:[0,1]\longrightarrow \mathbb{R}$ be integrable. Show that

$$\left(\int_0^1 f(t)dt\right)^2 \le \int_0^1 \left(f(t)\right)^2 dt.$$

- 2. Let $f : [a, b] \longrightarrow \mathbb{R}$ be decreasing. Find $TV(f_{[a, b]})$.
- 3. Let $f(t) = t^2 4t + 7$. Calculate $TV(f_{[1,3]})$.

2 Exercise 2(10+10 points)

Let $\{f_n\}_{n=1}^{\infty} \longrightarrow f$ in measure on E and g be a measurable function on E that is finite a.e. on E. Show that $\{f_n\}_{n=1}^{\infty} \longrightarrow g$ in measure on E if and only if f = g a.e.

3 Exercise 3(9+6 points)

Let f be an absolutely continuous function on [a, b].

- 1. Show that if $|f'| \leq M$ a.e. on [a, b], then f is Lipschitz on [a, b].
- 2. Deduce that if f' = 0 a.e. on [a, b], then f is constant on [a, b].

4 Exercise 4(15 points)

Let $(f_n)_{n=1}^{\infty}$ be measurable on [0, 1]. Show that if $\{f_n\}_{n=1}^{\infty}$ is uniformly integrable on [0, 1], then there exists a constant $C < \infty$ such that $\int_{[0,1]} |f| \le C$.

Hint: think to divide the interval [0, 1].

5 Exercise 5(5+5+5 points)

Suppose that f is finite on [a, b] and is of bounded variation on every interval $[a + \varepsilon, b]$, for $\varepsilon > 0$, with $TV(f_{[a+\varepsilon,b]}) \le M < +\infty$.

- 1. Show that $|f(t)| \leq M + |f(b)|$ for all $t \in (a, b)$.
- 2. Deduce that $TV(f_{[a,b]}) < +\infty$.
- 3. Is $TV(f_{[a,b]}) \leq M$? If not what additional assumptions will make it so?

6 Exercise 6(5+5+5 points)

Let f be a strictly increasing absolutely continuous function on [0, 1].

- 1. Show that $m\left(f\left((a,b)\right)\right) = \int_{(a,b)} f'$, for any open interval (a,b) of [0,1].
- 2. Let O be an open set of [0,1]. Show that $m\left(f\left(O\right)\right)=\int_{O}f'.$
- 3. Let F be a closed set of [0,1]. Deduce that $m\left(f\left(F\right)\right) = \int_{F} f'$.

Hint: The image of an interval by a continuous function is an interval. Any open set is a countable union of disjoints open intervals.