MATH 531 - Final Exam

KFUPM, Department of Mathematics and Statistics

Kroumi Dhaker, Term 211

Instructions: You must show all your work and state all the theorems you use. No materials are allowed.

Exercise 1(8+7 points)

1. Evaluate with proof

$$\lim_{n \to \infty} \int_0^n \left(\frac{\cos\left(\frac{x}{n}\right)}{1+x} \right)^2 dx.$$

2. Evaluate with proof

$$\lim_{n \to \infty} \int_0^n \frac{\cos\left(\frac{x}{n}\right)}{1+x} dx.$$

Exercise 2(10+5+5 points)

- 1. Let $1 \leq p < q < r < \infty$. Show that $L^p(\mathbb{R}) \cap L^r(\mathbb{R}) \subseteq L^q(\mathbb{R})$.
- 2. Suppose that $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ is Lebesgue measurable for each n such that $||f_n||_3 \to 0$ and $||f_n||_5 \to 0$ as $n \to \infty$. Prove or give a counterexample for each of the statements below.
 - (a) $||f_n||_4 \to 0.$
 - (b) $||f_n||_2 \to 0.$

Exercise 3(5+5 points)

- 1. Let $f \in L^1(\mathbb{R})$. Show that $\arctan(f) \in L^1(\mathbb{R})$
- 2. Show that if f, f_1, f_2, \ldots belong to $L^1(\mathbb{R})$ such that $(f_n) \to f$ in $L^1(\mathbb{R})$, then $(\arctan(f_n)) \to \arctan(f)$ in $L^1(\mathbb{R})$.

Exercise 4(7+7 points)

Let $1 . Suppose that f belongs to <math>L^p([0,\infty))$.

1. Show that

$$\int_{x}^{\infty} \frac{|f(t)|}{t} dt < (p-1)^{\frac{p-1}{p}} x^{-\frac{1}{p}} \left(\int_{x}^{\infty} |f(t)|^{p} dt \right)^{\frac{1}{p}}$$

for any x > 0.

2. Deduce that

$$\lim_{x \to \infty} x^{\frac{1}{p}} \int_x^\infty \frac{f(t)}{t} dt = 0.$$

Exercise 5(8+8 points)

- 1. Let $f : [a, b] \longrightarrow [m, M]$ be an absolutely continuous function and $g : [m, M] \longrightarrow \mathbb{R}$ be Lipchitz. Show that $h = g \circ f$ is absolutely continuous on [a, b].
- 2. Let f be of bounded variation on [a, b]. Show that if $f \ge c$ on [a, b] for some constant c > 0, then

$$TV\left(\left(\frac{1}{f}\right)_{[a,b]}\right) \leq \frac{TV(f_{[a,b]})}{c^2}.$$

Exercise 6(6+9 points)

Let $f_n(x) = nx^{n-1} - (n+1)x^n$, for $x \in (0,1)$ and $n \ge 1$.

1. Show that

$$\int_{(0,1)} \sum_{n=1}^{\infty} f_n \neq \sum_{n=1}^{\infty} \int_{(0,1)} f_n$$

2. Show that $\sum_{n=1}^{\infty} \int_{(0,1)} |f_n| = \infty$.

Exercise 7(5+5 points)

Let f be the function defined by $f(x) = x^2 - 4x + 3$. Define ν the signed measure on \mathbb{R} by

$$\nu(E) = \int_E f dm,$$

for any Lebesgue measurable subset E of $\mathbb R.$

- 1. [2,4] is positive? negative? Justify.
- 2. Find a Hahn decomposition of $\mathbb R$ and give the Jordan decomposition of $\nu.$ Justify