KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS & STATISTICS

MATH 531: Real Analysis (211)

Instructor: Dr. Dhaker Kroumi Office: 5-201-3 Phone : 860-7565 E-mail : dhaker.kroumi@kfupm.edu.sa Office Hours: MW: 2:00 PM -3:00 PM, or by appointment

Check Blackboard regularly for announcements

Textbook: Real Analysis by H.L. Royden and P.M. Fitzpatrick

Course Objectives:

The course is designed to introduce graduate students to measure theory. Stress will be particularly given to the Lebesgue measure, integration, and the classical L^p -spaces.

Assessment for this course is based on **homework's**, *two major exams* and a *comprehensive final exam*, as described in the following table:

Activity	Weight
пошежотк	13 70
First Major Exam: (chapters 1-4)	
TBF	25 %
Second Major Exam: (chapters 5-6)	
TBF	25 %
Final Exam: (Comprehensive) As posted on the Registrar Website	35 %

*** If it is needed, evaluation Scheme can be revised.

Syllabus –	A rough	weekly	guideline
------------	---------	--------	-----------

Week # (Dates)	Sections	Topics
Week 1	2.1-2.2	Introduction, Lebesgue outer Measure
(Aug 29 – Sep 02)	2.3	The σ -Algebra of Lebesgue Measurable sets
Week 2	2.4	Outer and Inner Approximation of Lebesgue Measurable
(Sep 05 – 09)	2.5	Countable Additivity, Continuity, and the Borel-Cantelli Lemma

Week 3 (Sep 12 – 16)	3.1-3.2 3.3	Sums, Products, and Compositions Sequential Pointwise Limits and Simple Approximation Littlewood's Three Principles, Egoroffs Theorem, and Lusin's Theorem	
Week 4 (Sep 19 – 23)	4.1 4.2	The Riemann Integral The Lebesgue Integral of a Bounded Measurable Function over a Set of Finite Measure	
Week 5	4.3	The Lebesgue Integral of a Measurable Nonnegative Function	
(Sep 26 – 30)	4.4	The General Lebesgue Integral	
Week 6	4.5	Countable Additivity and Continuity of Integration	
(Oct 3 – 7)	4.6	Uniform Integrability: The Vitali Convergence	
Week 7	5.1	Uniform Integrability and Tightness: A General Vitali Convergence Theorem	
(Oct 10 – 14)	5.2	Convergence in Measure	
Week 8	5.3	Characterizations of Riemann and Lebesgue Integrability	
(Oct 17 – 21)	6.1	Continuity of Monotone Functions	
Week 9	6.2	Differentiability of Monotone Functions: Lebesgue's Theorem	
(Oct 24 – 28)	6.3	Functions of Bounded Variation: Jordan's Theorem	
Week 10	6.4	Absolutely Continuous Functions	
(Oct 31 –Nov 4)	6.5	Integrating Derivatives: Differentiating Indefinite Integrals	
Weeks 11 and 12	6.6	Convex Functions	
(Nov 7 – 18)	7.1	Normed Linear Spaces	
Week 13 (Nov 21 – 25)	7.2 7.3	The Inequalities of Young, Holder, and Minkowski L^p is Complete: The Riesz-Fischer Theorem	
Week 14	17.1	Measures and Measurable Sets	
(Dec 05 – 09)	17.2	Signed Measures: The Hahn and Jordan Decompositions	
Week 15	18.1	Measurable Functions	
(Dec 12 – 16)	18.2	Integration of Nonnegative Measurable Functions	

Outcomes:

It is expected that the student shall be able to know and use the concept of Lebesgue measure on real line, general measure theory, convergence theorems, Lusin's theorem, Egorov's theorem, L^p -spaces, Fubini's theorem, functions of bounded variation, absolutely continuous functions and Lebesgue differentiation theorem.