MATH 531 - Major Exam 1

KFUPM, Department of Mathematics and Statistics

Kroumi Dhaker, Term 212

1 Exercise 1(10 points)

Show that if a set E has positive outer measure, then there is a bounded subset of E that also has positive outer measure.

2 Exercise 2(15 points)

Suppose the function f is defined on a measurable domain E and $\{x \in E : f(x) > c\}$ is a measurable set for each rational number c. f is measurable on E?

3 Exercise 3(15=5+10 points)

- 1. State Egoroff's Theorem.
- 2. Show that the conclusion of Egoroff's Theorem can fail if we drop the assumption that the domain has finite measure.

4 Exercise 4(15=5+10 points)

- 1. State Beppo-Levi's Theorem.
- 2. Use the fact that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ to show

$$\int_0^\infty \frac{x}{e^x - 1} dx = \frac{\pi^2}{6}.$$

5 Exercise 5(15=5+10 points)

- 1. State the Monotone Convergence Theorem.
- 2. Show that the Monotone Convergence Theorem may not hold for decreasing sequences of measurable functions.

6 Exercise 6(15=5+10 points)

- 1. State the Lebesgue Dominated Convergence Theorem.
- 2. Prove that there does not exist an integrable function f on [0, 1] such that for any integer $n \ge 1$,

 $n^{2}(1-x)x^{n} \leq f(x)$ for all $x \in [0,1]$.

Hint: Use the fact that if $\lim_{n\to\infty} \left| \frac{f_{n+1}}{f_n} \right| = L < 1$, then $\lim_{n\to\infty} f_n = 0$.

7 Exercise 7(15 points)

Show that the following limit exists and find the limit.

$$\lim_{n \to \infty} \int_{(0,\infty)} \frac{\cos(x^n)}{1+x^n} dm(x).$$