MATH 531 - FINAL

KFUPM, Department of Mathematics and Statistics

Kroumi Dhaker, Term 212

1 Exercise 1(15 points)

Let f be a Lebesgue integrable function on $\mathbb R.$ Prove that

$$\lim_{n \to \infty} \int_{n^2}^{n^3} f(x) dx = 0.$$

2 Exercise 2(15 points)

Let $p \in (1, \infty)$ and $f, g \in L^p([0, 1])$. Show that $|f|^{p-1}|g|$ is integrable on [0, 1] and find a bound on its integral.

3 Exercise 3(15 points)

Let $1 \leq p < q < r < \infty$ be three real numbers. Let f be measurable on E such that $f \in L^p(E) \cap L^r(E)$. Show that $\int_E |f|^q < \infty$.

4 Exercise 4(15 points)

Let $\{f_n\}_n$ be a sequence of functions in $L^2([0,1])$ satisfying $||f_n||_2 \leq M$ for all $n \geq 1$. In addition, suppose that $\{f_n\}_n \longrightarrow f$ almost everywhere on [0,1]. Prove that $f \in L^2([0,1])$ with $||f||_2 \leq M$.

5 Exercise 5(15 points)

Let ν be a signed measure on a measurable space (X, \mathcal{M}) . Define the measure $|\nu| = \nu^+ + \nu^-$. Show that E is null with respect to ν if and only if $|\nu|(E) = 0$.

6 Exercise 6(25 points)

Assume that $m(E) < \infty$. Let $f \in L^{\infty}(E)$. The goal of this question is to show that

$$\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}.$$

1. Let $p \ge 1$. Show that $||f||_p \le ||f||_{\infty} m(E)^{\frac{1}{p}}$. Deduce that

$$\limsup_{p \to \infty} \|f\|_p \le \|f\|_{\infty}.$$

- 2. Let $\varepsilon > 0$. Using the fact that $||f||_{\infty} \varepsilon$ is not an essential upper bound of f, show that there exists $E_{\varepsilon} \subseteq E$ with $m(E_{\varepsilon}) > 0$ and $||f||_p \ge (||f||_{\infty} - \varepsilon) m(E_{\varepsilon})^{\frac{1}{p}}$ for all $p \ge 1$.
- 3. Deduce that

$$\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}.$$

Hint: $\lim_{x \to 0^+} a^x = 1$ if a > 0.