

College of Computing and Mathematics Department of Mathematics

MATH531 – Real Analysis Major Exam 1 Term 222

February 26, 2023

Time allowed: 110 Minutes.

Name	
Student ID #	

Question #	Mark	Maximum Mark
1		15
2		15
3		10
4		13
5		14
6		19
7		14
Total		100

Instruction: Give the details of every solution (proof).

Exercise 1

- (a) If E_1 is a finite set, show that $m^*(E_1) = 0$.
- (b) Let *A* be the set of irrational numbers in the interval [0, 1]. Prove that $m^*(A) = 1$.

Exercise 2 Let *E* have finite outer measure. Show that *E* is measurable if and only if for each open, bounded interval (a, b),

$$b-a = m^*((a,b) \cap E) + m^*((a,b) \sim E).$$

Exercise 3 (Solve only one of the following problems)

- (a) Show that if a set *E* has positive outer measure, then there is a bounded subset of *E* that also has positive outer measure.
- (b) Let *E* have finite outer measure. Show that if *E* is not measurable, then there is an open set O containing E that has finite outer measure and for which

$$m^*(\mathcal{O} \sim E) > m^*(\mathcal{O}) - m^*(E).$$

Exercise 4 Let *f* be a measurable function on *E* that is finite a.e. on *E* and $m(E) < \infty$. For each $\varepsilon > 0$, show that there is a measurable set *F* contained in *E* such that *f* is bounded on *F* and $m(E \sim F) < \varepsilon$.

Exercise 5 State the three Littlewood principles and state the three related theorems (precise formulations of the Littlewood principles).

Exercise 6 (Solve two of the following problems including (c))

- (a) Prove that the extension of Lusin's Theorem to the case that f is finite a.e.
- (b) Show that the conclusion of Egoroff's Theorem can fail if we drop the assumption that the domain has finite measure.
- (c) Suppose a function *f* has a measurable domain and is continuous except at a finite number of points. Show that *f* is measurable.

Exercise 7 Let *f* be a nonnegative bounded measurable function on a set of finite measure *E*. If $\int_{F} f = 0$, show that f = 0 a.e. on *E*.