

College of Computing and Mathematics Department of Mathematics

MATH531 – Real Analysis Major Exam 2 Term 222

April 11, 2023

Time allowed: 110 Minutes.

Name	
Student ID #	

Question #	Mark	Maximum Mark
1		15
2		10
3		23
4		11
5		16
6		13
7		12
Total		100

Instruction: Give the details of every solution (proof).

Exercise 1 [15 points]

- (a) State the Monotone Convergence Theorem.
- (b) Show that Fatou's Lemma implies the Monotone Convergence Theorem.
- (c) Let $\{a_n\}$ be a sequence of nonnegative real numbers. Define the function f on

 $E = [1, \infty)$ by setting $f(x) = a_n$ if $n \le x < n + 1$. Show that $\int_E f = \sum_{n=1}^{\infty} a_n$.

Exercise 2 [10 points]

Let $\{f_n\}$ be a sequence of integrable functions on *E* for which $f_n \to f$ a.e. on *E* and *f* is integrable over *E*. Show that $\int_E |f - f_n| \to 0$ if and only if $\lim_{n \to \infty} \int_E |f_n| = \int_E |f|$.

Exercise 3 [23 points]

- (a) Let \mathcal{F} be a family of functions and E be a measurable set. What does it mean to say that \mathcal{F} is uniformly integrable over E and that \mathcal{F} is tight over E?
- **(b)** Let \mathcal{F} be a family of functions, each of which is integrable over E. Show that \mathcal{F} is uniformly integrable over E if and only if for each $\varepsilon > 0$, there exists a $\delta > 0$ such that for all $f \in \mathcal{F}$, if U is open and $m(E \cap U) < \delta$, then $\int_{F \cap U} |f| < \varepsilon$.
- (c) Let $\{f_k\}_{k=1}^n$ be a finite family of functions, each of which is integrable over *E*. Show that $\{f_k\}_{k=1}^n$ is tight over *E*.

Exercise 4 [11 points]

- (a) Show that if $\{f_n\} \to f$ uniformly on *E*, then $\{f_n\} \to f$ in measure on *E*
- (b) Let $\{f_n\}$ be a sequence of nonnegative integrable functions on *E*. Show that if $\lim_{n \to \infty} \int_E f_n = 0$ then $\{f_n\} \to 0$ in measure on *E*.

Exercise 5 [16 points]

- (a) Let f be a bounded function on [a, b] whose set of discontinuities has measure zero.Show that f is measurable. Then show that the same holds without the assumption of boundedness.
- (b) Show that if f is defined on (a, b) and $c \in (a, b)$ is a local minimizer for f, then $\underline{D}f(c) \le 0 \le \overline{D}f(c)$.

Exercise 6 [13 points]

(a) [*Continuity of Integration*] Let f be integrable over E and $\{E_n\}_{n=1}^{\infty}$ be descending countable collection of measurable subsets of E. Show that

$$\int_{\bigcap_{n=1}^{\infty} E_n} f = \lim_{n \to \infty} \int_{E_n} f.$$

(b) Let *f* be an integrable function on *E*. Show that for every $\varepsilon > 0$ there exists a natural number *N* such that if $n \ge N$, then $\left| \int_{E_n} f \right| < \varepsilon$ where $E_n = \{x \in E | |x| \ge n\}$.

Exercise 7 [12 points]

(a) Compute the total variation (*TV*) of e^{2x} on the interval [0, 10].

(b) Let the function f be of bounded variation on the closed, bounded interval [a, b]. Show that $f(x) + TV(f_{[a,x]})$ and $TV(f_{[a,x]})$ are increasing on [a, b] for all $x \in [a, b]$.