

College of Computing and Mathematics Department of Mathematics

MATH531 – Real Analysis Final Exam - Term 222

May 29, 2023

Time allowed: 150 Minutes.

Name	
Student ID #	

Question #	Mark	Maximum Mark
1		20
2		20
3		15
4		30
5		20
6		10
7		25
Total		140

Instruction: Give the details of every solution (proof).

Exercise 1 (20 points)

(a) Let $\{E_k\}_{k=1}^{\infty}$ be a countable disjoint collection of measurable sets. Prove that for any set A,

$$m^*\left(A \cap \bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} m^*(A \cap E_k)$$

(b) Assume *E* has finite measure. Let $\{f_n\}$ be a sequence of measurable functions on *E* that converges pointwise a.e. on *E* to *f* and *f* is finite a.e. on *E*. Show that $\{f_n\} \rightarrow f$ in measure on *E*.

Exercise 2 (20 Points)

- (a) Let the function f be of bounded variation on the closed, bounded interval [a, b]. Show that f is differentiable almost everywhere on the open interval (a, b).
- (b) Let the function f be absolutely continuous on [a, b]. Show that f is Lipschitz on [a, b] if and only if there is a c > 0 for which $|f'| \le c$ a.e. on [a, b].

Exercise 3 (15 Points)

- (a) Let f have a second derivative at each point in (a, b). Show that f is convex if and only if f'' is nonnegative.
- (b) Let f be integrable over [0,1]. Show that

$$\exp\left[\int_0^1 f(x)dx\right] \le \int_0^1 \exp(f(x))\,dx.$$

Exercise 4 (*30 Points*) True or False. If the statement is true, prove it. If the statement is false, provide a counterexample (with proof).

- (a) Every Cauchy sequence of real numbers is rapidly Cauchy.
- (b) If $\{f_n\}$ is bounded in $L^1[0,1]$, then $\{f_n\}$ uniformly integrable over [0,1].
- (c) Let $1 . If <math>f, g \in L^p([0,1])$, then $|f||g|^{p-1}$ is integrable on [0,1].

Exercise 5 (20 Points)

(a) For f in $L^1[a, b]$, define $||f|| = \int_a^b x^2 |f(x)|$. Show that this is a norm in $L^1[a, b]$.

(b) Let $\{f_n\}$ be a sequence of measurable functions that converges pointwise a.e. on *E* to *f*. Suppose there is a function *g* in $L^2(E)$ such that for all *n*, $|f_n| \le g$ a.e. on *E*. Show that $\{f_n\} \to f$ in $L^2(E)$.

Exercise 6 (10 Points)

Let *v* be a signed measure on the measurable space (X, \mathcal{M}) . Show that the union of a countable collection of positive sets is positive.

Exercise 7 (25 Points)

- (a) Let f and g be nonnegative measurable functions on X for which $g \le f$ a.e. on X. Show that f = g a.e. on X if and only if $\int_X g d\mu = \int_X f d\mu$
- **(b)** Let (X, \mathcal{M}, μ) be a measure space and f a nonnegative measurable function on X for which $\int_X f d\mu < \infty$. Show that f is finite a.e. on X and $\{x \in X | f(x) > 0\}$ is σ -finite.