

College of Computing and Mathematics Department of Mathematics

MATH531 – Real Analysis SYLLABUS AY 2022-2023 (Term 222)

Instructor	Dr. Khairul Saleh	Phone	+966-13-860-7524
Office	Building 5 - Room 305	E-mail	<u>khairul@kfupm.edu.sa</u>
Office Hour	19:00 PM – 09:45 PM (Sun, Tue) 19:30 AM – 10:30 AM (Mon, Wed) and by appointment		
Textbook	Real Analysis by H.L. Royden an	nd P.M. Fitzpatrie	ck, Fourth Edition, Pearson
Description	Lebesgue measure and outer meas integral. Lebesgue convergence the spaces. Riesz representation theore spaces.	ure. Measurable f orem. Differentia rm. Introduction t	functions. The Lebesgue tion and integration. L ^p o Banach and Hilbert
Objectives	The course is designed to introduc particularly focusing on the Lebes spaces.	The course is designed to introduce graduate students to measure theory, which particularly focusing on the Lebesgue measure, integration, and the classical L ^p spaces.	
Learning Outco	 mes Upon successful completion of this Identify the Lebesgue Med the Lebesgue measure. Perform operations on me Use the Monotone Conver Theorem, and the Domin Compare the Riemann in. Distinguish different types Identify functions of boun- functions. Use basic properties of the 	course, a student esurable sets and a asurable functions gence Theorem, H ated Convergence tegral and the Leb of convergences. ded variations and L ^p spaces.	should be able to: lescribe basic properties of s. Fatou's Lemma, Fubini's Theorem. pesgue integral. d absolutely continuous

Week	Date	Торіс		
1	15 – 19 Jan	2.1 Introduction		
		2.2 Lebesgue outer Measure		
		2.3 The σ -Algebra of Lebesgue Measurable sets		
2	22 – 26 Jan	2.4 Outer and Inner Approximation of Lebesgue Measurable		
		2.5 Countable Additivity, Continuity, and the Borel-Cantelli Lemma		
3	29 Jan – 2 Feb	3.1 Sums, Products, and Compositions		
		3.2 Sequential Pointwise Limits and Simple Approximation		
4	5 – 9 Feb	3.3 Littlewood's Three Principles, Egoroff's Theorem, and Lusin's Theorem		
		4.1 The Riemann Integral		
5	12 – 16 Feb	4.2 The Lebesgue Integral of a Bounded Measurable Function over a Set		
		of Finite Measure		
		4.3 The Lebesgue Integral of a Measurable Nonnegative Function		
6	19 – 21 Feb	4.4 The General Lebesgue Integral		
		4.5 Countable Additivity and Continuity of Integration		
Saudi Founding Day (22 – 23 February 2023)				
Major Exam 1. Material: 2.1-4.4. Date: 26 February 2023. Time: TBA				
7	26 Feb – 2 Mar	4.6 Uniform Integrability: The Vitali Convergence		
		5.1 Uniform Integrability and Tightness: A General Vitali Convergence		
		Theorem		
8	5–9 Mar	5.2 Convergence in Measure		
		5.3 Characterizations of Riemann and Lebesgue Integrability		
9	12 – 16 Mar	6.1 Continuity of Monotone Functions		
		6.2 Differentiability of Monotone Functions: Lebesgue's Theorem		
10	19 – 23 Mar	6.3 Functions of Bounded Variation: Jordan's Theorem		
		6.4 Absolutely Continuous Functions		
11	26 – 30 Mar	6.5 Integrating Derivatives: Differentiating Indefinite Integrals		
		6.6 Convex Functions		
12	2–6 Apr	7.1 Normed Linear Spaces		
		7.2 The Inequalities of Young, Holder, and Minkowski		
Major Exam 2. Material: 4.5-6.6. Date: 6 April 2023. Time: TBA				
13	9–13 Apr	7.3 L^p is Complete: The Riesz-Fischer Theorem		
		17.1 Measures and Measurable Sets		
	Eid Al-Fitr Holidays (16 – 27 April 2023)			
14	30 Apr – 4 May	17.2 Signed Measures: The Hahn and Jordan Decompositions		
		18.1 Measurable Functions		
15	7–11 May	18.2 Integration of Nonnegative Measurable Functions		
		Review		
Final Exam: Comprehensive. Date: TBD				

Grading Policy:

- 25%
- 25%
- 15%
- Major Exam 1
 Major Exam 2
 Homework Assignment
 Final Exam (Comprehensive) 35%