King Fahd University of Petroleum and Minerals Department of Mathematics MATH533 - Complex Variables

Exam I - Semester 231

Exercise 1

Let f be an entire function.
(a) Show that if $\lim _{|z| \rightarrow \infty} f(z)=c \in \mathbb{C}$, then f is constant
(b) Let $a \in \mathbb{C}, r>0$. Show that if $f: \mathbb{C} \rightarrow \mathbb{C} \backslash D(a, r)$, then f is constant.

Exercise 2

Under the transformation $w=\frac{i z}{z-1}$ find the image of
(a) the open unit disk $|z|<1$.
(b) the right half-plane $\operatorname{Re} z>0$.

Exercise 3

(a) Show that

$$
\cot ^{-1}(z)=\frac{1}{2 i} \log \left(\frac{z+i}{z-i}\right)
$$

and find its derivative.
(b) Find the domain of analyticity of

$$
\operatorname{Cot}^{-1}(z):=\frac{1}{2 i} \log \left(\frac{z+i}{z-i}\right)
$$

Exercise 4

Let $w=T(z)=\frac{a z+b}{c z+d}$ be a bilinear transformation such that $a d-b c \neq 0$ and $T\left(z_{1}\right)=w_{1}$ and $T\left(z_{2}\right)=w_{2}$ with $z_{1} \neq z_{2}$.
(a) Show that

$$
w-w_{k}=\frac{(a d-b c)\left(z-z_{k}\right)}{(c z+d)\left(c z_{k}+d\right)} . \quad k=1,2 .
$$

(b) Prove that

$$
\frac{w-w_{1}}{w-w_{2}}=\left(\frac{c z_{2}+d}{c z_{1}+d}\right)\left(\frac{z-z_{1}}{z-z_{2}}\right) .
$$

(c) Deduce that, if z_{1} and z_{2} are distinct fixed points of a bilinear transformation $w=T(z)$, show that

$$
\frac{w-z_{1}}{w-z_{2}}=K \frac{z-z_{1}}{z-z_{2}}
$$

where $K \in \mathbb{C}$.
(d) Using (c), find the bilinear transformation T having z_{1} and z_{2} as distinct fixed points and $T(\infty)=\frac{z_{1}+z_{2}}{2}$.

Exercise 5

Let u be a harmonic function on a connected domain Ω.
(a) Show that $g(z)=u_{x}-i u_{y}$ is analytic on Ω.
(b) Show that if G is an antiderivative of g, then $\operatorname{Re} G-u$ is constant.
(c) Show that u has a harmonic conjugate if and only if g has an antiderivative on Ω.
(d) Use (c) to show that the harmonic function $z \mapsto \ln |z|$ has no harmonic conjugates on $\mathbb{C} \backslash\{0\}$.

Exercise 6

Find all entire functions f such that

$$
|f(z)| \leq \frac{|z|^{3}}{\log |z|} \quad|z|>1
$$

Exercise 7

(a) Evaluate the following integral

$$
\int_{|z|=1} z(\operatorname{Re} z)^{2} d z
$$

(b) Suppose that f is analytic for $|z|<2$. Evaluate

$$
\int_{|z|=1}(\operatorname{Im} z+1) \frac{f(z)}{z} d z
$$

