Department of Mathematics, King Fahd University of Petroleum & Minerals, Math 533 Exam-02, 2024-2025 (241)

Time Allowed: 120 Minutes

Name:	ID#:
Section/Instructor:	Serial #:

- Mobiles, calculators and smart devices are not allowed in this exam.
- Write neatly and eligibly. You may lose points for messy work.
- Show all your work. No points for answers without justification.

Question $\#$	Marks	Maximum Marks
1		15
2		15
3		15
4		15
5		15
Total		75

Q1: (a) State and prove Liouville's theorem using Cauchy's integral theorem (do not use Cauchy's inequality).

OR

Q1: (a) State and prove Moreara's theorem.

(b) Prove that for any entire function f(z) such that $Re(f(z)) \ge Im(f(z))$ for all $z \in C$ is constant.

Q2: (a) State Cauchy's inequality. Let $f(z) = \frac{1}{(1-z)^2}$, 0 < R < 1. Verify that

 $\max_{|z|=R} = \frac{1}{(1-R)^2}.$ Also show that $f^{(n)}(0) = (n+1)!$ and $(n+1)! \le \frac{n!}{R^n(1-R)^2}.$ (b) Evaluate $\int_C \frac{Log(z)}{2z^2 - 2z + 1} dz, \quad C: \{z: |z-1| = \frac{8}{9}\}.$

Q3: (a) State Gauss's Mean-Value theorem and use it to evaluate

$$\int_{o}^{2\pi} Log(b^2 + 1 + 2b \cos(n\theta)) d\theta.$$

(b) State Maximum Modulus theorem and use it to find the maximum value of $|z^2+2z-3|_{|z|\leq 1}$.

Q4: (a) Expand $f(z) = \frac{z^2}{z^2 - 3z + 2}$ in a Laurent series valid for 1 < |z - 3| < 2. (b) Let f(z) be an entire function satisfying that $|f(z)| \le |z|^2$ for all z. Show that $f(z) \equiv az^2$ for some constant a satisfying |a| < 1.

Q5: (a) Find a bilinear transformation that maps the points z = 1 - i, 1 + i, -1 + i onto $w = 0, 1, \infty$.

(b) Find the image of the ∞ strip $\frac{1}{4} \le y \le \frac{1}{2}$ under the transformation $w = \frac{1}{z}$. Also sketch the images.