King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics

Math 535: Functional Analysis Exam 1, Spring Semester 212

Problem 1: (20 points)

Let V be a finite-dimensional vector space and let U_1 and U_2 be two sub- spaces of V. Show that one can write

$$\dim (U_1 + U_2) = \dim U_1 + \dim U_2 - \dim (U_1 \cap U_2).$$

Problem 2:(20 points)

Give an example of a complete metric space and another example for a metric space that is not complete. Justify your answer.

Problem 3: (30 points)

Let X be a metric space with a dense subset $A \subset X$ such that every Cauchy sequence in A converges in X. Prove that X is complete.

Problem 4: (30 points)

Let (X,d) be a complete metric space. Let $\{f_n: X \to X, n=1,2,\cdots\}$ be a sequence of contractions with the same constant k and let $\{f: X \to X\}$ be a contraction with the same constant k such that $f(x) = \lim_{n \to \infty} f_n(x)$ for all $x \in X$. If the fixed point of f is x^* and the fixed point of f_n is x^*_n for $n=1,2,\cdots$, then show that

 $x^* = \lim_{n \to \infty} x_n^*.$

Good luck Manal Alotaibi

Problem 1: (20 points)

Let V be a finite-dimensional vector space and let U_1 and U_2 be two sub- spaces of V. Show that one can write

$$\dim (U_1 + U_2) = \dim U_1 + \dim U_2 - \dim (U_1 \cap U_2).$$
Let V be just impusional vector space U_1, U_2 are spaces of V by a theorem $U_1 \cap U_2$ has finite basis $2q_1, q_2, \dots, q_n$?

Part of a basis $2q_1, q_2, \dots, q_n$, $\beta_1, \beta_2, \dots, \beta_n$? for U_4 \Rightarrow dim $U_4 = K+m$

even of a basis
$$2q_1,q_2,...,q_k$$
, $\beta_1,\beta_2,...,\beta_m$ for $U_1 \implies dim U_1 = k+11$ even for of a basis $2q_1,q_2,...,q_k$, $\delta_1,\delta_2,...,\delta_n$ for $U_2 \implies k \implies dim U_2 = k+11$. Then the subspace U_1+U_2 is spanned by the vectors

$$\{ q_1, q_2, q_3, \dots, q_k, \beta_1, \beta_2, \dots, \beta_m, \gamma_1, \gamma_2, \dots, \gamma_n \}$$

and these vectors form an Independent Set. i.e.

$$\sum x_i d_i + \sum y_i \beta_i + \sum x_i = 0$$

$$\sum x_i q_{i+} \sum y_i \beta_i = -\sum x_i x_i$$

=> => ZZX belonge to U1. As it belonge to U2 as given In *

for eartain Scalars $C_1, C_2, \dots C_k$ become of \star is Independent $\mathcal{L}_r = 0$ $\forall r$

$$\Rightarrow \sum \chi_i q_i + \sum y_i \beta_i = 0$$

and since $2q_1,q_2,...,q_k$, $\beta_1,\beta_2,...,\beta_m$ is also Independent $\Rightarrow x_i = 0$ and $y_i = 0$ $\forall i,j$

is a basis for 4+ 12 and has the dimention K+M+n

Problem 2:(20 points)

Give an example of a complete metric space and another example for a metric space that is not complete. Justify your answer.

```
* Example of a complete metric space.
    The metric space (R,d) is complete
         where \delta(x,y) = |x-y| \forall x,y \in \mathbb{R}
  By considering acusely eys vence EXn3 in (R, d)

. We can immediately get EXn3 is bounded by theorem (5.4.3.a)
 . But we know that every bounded sequence of real numbers
 • must have convergent Subsequence By theorem (34.2)
• thus this seg must be converges. By theorem (5.4.3.6)
Therefore, (IR, d) is complete.
* Example of not complete metric space.
    The metric space (G,d) is not complete.
          Consider, the sequence 2 h, 3 such that
          2nd represented in Jecimal system
                 n= 1.a,a2... an is the largest rational number
          that satisfy rn < 2
     Thus, we obtain the sequence
              10 = 141
               h= 1.41421 ....
     4(\Gamma_{m},\Gamma_{n}) = \Gamma_{n} - \Gamma_{m} = 0.0... \circ 0_{mH} ... \circ 0_{n}
    \Rightarrow d(r_m, r_n) \rightarrow 0 as m \rightarrow \infty
 note that d(n,r) = In-r21, n,r, eq
```

Thus, the space of rational numbers is not complete.

Problem 3: (30 points)

Let X be a metric space with a dense subset $A \subset X$ such that every Cauchy sequence in A converges in X. Prove that X is complete.

• Let (χ_n) be a Cauchy Sequence in χ Since A Jense in χ we can choose a sequence (a_n) in A Such that $J(\chi_n, a_n) \longrightarrow 0$ as $n \longrightarrow 0$ (i.e. choose $a_n \in A$ S.t. $J(\chi_n, a_n) < \gamma_n$)

• Given any $\xi > 0$, $\exists M \in \mathbb{N}$ S.f. $J(x_{u}, a_{n}) < \xi_{3}$ and $J(x_{m}, x_{n}) < \xi_{3}$ $\forall m, n > M$ so $J(a_{m}, a_{n}) \leqslant d(a_{m}, x_{m}) + J(x_{m}, x_{n}) + J(x_{n}, a_{n})$ $\leqslant \xi_{3} + \xi_{3} + \xi_{3} = \xi$

 \Rightarrow (a_n) is couply sequence in A \Rightarrow $(a_n) \longrightarrow x$, for some $x \in X$

Given any $\varepsilon>0$, $\exists N\in\mathbb{N}$ 3.+ $d(x_{u_1}a_u)<\varepsilon/_2 \quad \text{and} \quad d(a_u,x)<\varepsilon/_2 \quad \forall n>N$ $d(x_{u_1}x)\ll d(x_{u_1}a_u)+d(a_{u_1}x)$ $\leq \varepsilon/_2+\varepsilon/_2=\varepsilon$

which shows that (Xn) converges to X Therefore, X is complete.

Problem 4: (30 points)

3 > (xx, xx) € €

Let (X,d) be a complete metric space. Let $\{f_n: X \to X, n=1,2,\cdots\}$ be a sequence of contractions with the same constant k and let $\{f: X \to X\}$ be a contraction with the same constant k such that $f(x) = \lim_{n \to \infty} f_n(x)$ for all $x \in X$. If the fixed point of f is x^* and the fixed point of f_n is x^*_n for $n=1,2,\cdots$, then show that

$$x^* = \lim_{n \to \infty} x_n^*.$$

$$f_n(x_n^*) = x_n^* \quad \forall n = 1, 2, \dots$$

$$f_n(x_n^*) = x^*$$

$$f_n \to f_n \quad \text{Let } \in >0 \quad \text{and } \quad \text{choose } N \quad \text{s.t.}$$

$$Now_n \quad \forall n > N$$

$$d(x_n^*, x^*) \leq d(f_n(x_n^*), f(x_n^*)) + d(f(x_n^*), f(x^*))$$

$$\leq d(f_n(x_n^*), f(x_n^*)) + d(f(x_n^*), f(x^*))$$

$$\leq e(1+k) + k d(x_n^*, x^*)$$

$$(1-k)d(x_n^*, x^*) \leq e(1-k)$$

¥ n≥N