EXAM 2

Duration: 120 minutes

ID:	
NAME:	

	Problem	Score
	1	
	2	
tached to	3	
	4	
	5	
	Total	/100

- Show your work.
- There are empty pages attached to this exam booklet.

Problem 1 (20 points)

The vector space *U* is endowed with a semi-norm *p*. A relation $u \sim v$ on *U* where $u, v \in U$ is defined by p(u - v) = 0. Show that this relation is an equivalence relation on *U* and the equivalence class [0] is a subspace of *U*.

Problem 2 (20 points)

Consider a normed space *U*.

- (a) Prove that $\overline{\mathfrak{M}}$ is a subspace of *U*, where \mathfrak{M} is a subspace of *U*.
- (b) If \mathfrak{N} is nonempty subset of *U*, show that the closed linear hull of \mathfrak{N} is the closure of the linear hull of \mathfrak{N} .

Problem 3 (20 points)

Let $(U, \|\cdot\|_1)$ and $(U, \|\cdot\|_2)$ be two Banach spaces on the same vector space U. Assume that there exists a constant $\mu > 0$ such that

 $||u||_2 \le \mu ||u||_1$ for all $u \in U$.

Show that $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent.

Problem 4 (20 points)

Let \mathfrak{M} be a closed subspace of a reflexive Banach space *U*. Show that \mathfrak{M} is also reflexive, i.e $\mathfrak{M}'' = \mathfrak{M}$.

Problem 5 (20 points)

Let *U* and *V* be two normed spaces, $A : U \to V$ be a continuous linear operator and A' its conjugate. Assume that A^{-1} exists and continuous. Show that for every $f \in U'$, there exists $g \in V'$ such that f = A'g.