FINAL EXAM

Duration: 180 minutes

ID:	
NAME:	

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	/140

- Show your work.
- There are empty pages attached to this exam booklet.

Problem 1 (20 points)

Let U^* be the algebraic dual of the vector space U. For a nonzero $f \in U^*$, show that there exists a vector $u \in U$ such that f(u) = 1.

Problem 2 (20 points)

Let $f : X \to Y$ be a function where (X, d) is a metric space and (Y, \mathfrak{Y}) is a topological space. Show that f is continuous if every sequence $\{x_n\} \subset X$ such that $x_n \to x$, the sequence $\{f(x_n)\} \subset Y$ converges to f(x).

Problem 3 (20 points)

Let *U* be a normed space. Prove that *U* is a Banach space if and only if every absolutely convergent infinite vector series in *U* is convergent.

Problem 4 (20 points)

Let *U* be a normed space. If its topological dual U' is separable, show that *U* itself is also separable.

Problem 5 (20 points)

Let $\mathbb{C}[x]_{[-1,1]}$ be the normed space of complex-valued polynomials defined on the interval [-1,1] with the norm

$$\|p\| = \sqrt{\int_{-1}^{1} [|x||p(x)|^2 + 3|p'(x)|^2] dx}, \text{ for all } p \in \mathbb{C}[x]_{[-1,1]}$$

- (a) Does this norm generate an inner product on $\mathbb{C}[x]_{[-1,1]}$? If yes find it.
- (b) Show that

$$\left| \int_{-1}^{1} \left[|x|^{3} p(x) + 6xp'(x) \right] dx \right| \le \frac{5}{\sqrt{3}} \left\{ \int_{-1}^{1} \left[|x| |p(x)|^{2} + 3|p'(x)|^{2} \right] dx \right\}^{1/2}$$

Problem 6 (20 points)

Let \mathbb{K} be a nonempty, closed and convex subset of a Hilbert space \mathcal{H} . Prove that for each vector $x_0 \in \mathcal{H}$, there exits a unique vector $y_0 \in \mathbb{K}$ such that

 $d(x_0, \mathbb{K}) = ||x_0 - y_0||.$

Problem 7 (20 points)

Let \mathcal{O} be an orthonormal set of an inner product space H.

- (a) If the linear hull of \mathcal{O} is dense in *H*, show that \mathcal{O} is complete.
- (b) If *H* is a Hilbert space and \mathcal{O} is complete, show that the linear hull of \mathcal{O} is dense in *H*.