King Fahd University of Petroleum and Minerals Department of Mathematics

Math 550 Linear Algebra (Term 211)

Major Exam 1 (Duration = 3 hours)

Problem 1. Let *T* be the linear operator on \mathbb{R}^3 defined by T(x, y, z) = (y + z, x + z, x + y). Let $S := \{e_1, e_2, e_3\}$ be the standard ordered basis for \mathbb{R}^3 and let $B := \{f_1, f_2, f_3\}$ with $f_1 = (0, 1, -1), f_2 = (-2, 0, 1), f_3 = (1, -1, 0)$.

- (1) Find the matrix of *T* in *S*.
- (2) Show that *T* is invertible and find T^{-1} .
- (3) Show that *B* is a basis.
- (4) Find the matrix of *T* in *B*.

Problem 2. Let *V* be the space of $n \times n$ matrices over a field *F* and $B := \{A_{ij}\}_{1 \le i,j \le n}$ its standard basis (i.e., A_{ij} takes **1** in the *i*th row and *j*th column and **0** elsewhere). Consider the following two subspaces of *V*:

$$W_1 := \{ A \in V \mid \text{trace}(A) = 0 \}$$
$$W_2 := \{ A \in V \mid \exists A_1, A_2 \in V \ s.t. \ A = A_1 A_2 - A_2 A_1 \}$$

- (1) For each $i, j, k, h \in \{1, ..., n\}$, find $A_{ij}A_{kh}$
- (2) Show that $A_{ij} \in W_2$, $\forall i \neq j \in \{1, \dots, n\}$
- (3) Construct a subset $S := \{E_{ij}\}_{i,j}$ of W_2 made of $n^2 1$ linearly independent elements.
- (4) Show $W_1 = W_2$

Problem 3. Given a matrix *A*, let *f* and *p* denote its (monic) characteristic polynomial and minimal polynomial, respectively. Find *f* and *p* for each one of the following matrices:

(1)
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 over \mathbb{R}
(2) $A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ over \mathbb{R}
(3) $A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ over \mathbb{C} .

Problem 4. Let *V* be the space of $n \times n$ matrices over a field *F* and $B := \{A_{ij}\}_{1 \le i,j \le n}$ its standard basis (i.e., A_{ij} takes **1** in the *ith* row and *jth* column and **0** elsewhere).

Let $A = \begin{pmatrix} | \\ -a_{ij} \\ | \end{pmatrix}$ be a fixed $n \times n$ matrix over *F* and *T* the linear operator on *V* defined by

$$: V \longrightarrow V \\ X \mapsto AX - XA$$

(1) For each $i, j \in \{1, ..., n\}$, find $c_1, ..., c_n$ and $d_1, ..., d_n$ such that

$$T(A_{ij}) = \sum_{k=1}^{n} \left(c_k A_{kj} - d_k A_{ik} \right)$$

- (2) Assume *A* is diagonal with entries a_1, \ldots, a_n . Show that *T* is diagonalizable.
- (3) Assume $n \ge 4$ and let $a_1 = a_2 = a_3 = 1$ and $a_i = 0 \forall i \ge 4$. Find the minimal and characteristic polynomials of T.

Problem 5. Let *V* be the space of $n \times n$ matrices over a field *F* and $B := \{A_{ij}\}_{1 \le i,j \le n}$ its standard basis (i.e., A_{ij} takes **1** in the *ith* row and *jth* column and **0** elsewhere).

Let $A = \begin{pmatrix} - & a_{ij} \\ - & a_{ij} \end{pmatrix}$ be a fixed $n \times n$ matrix over *F* and *T* the linear operator on *V* defined by

$$\begin{array}{ccccc} T: & V & \longrightarrow & V \\ & X & \mapsto & AX \end{array}$$

Assume that A is diagonalizable; that is, AP = PD for some invertible matrix P and diagonal matrix D with entries d_1, \ldots, d_n .

- (1) For each $i, j \in \{1, ..., n\}$, find DA_{ij}
- (2) Find a basis B' := {A'_{ij}}_{1≤ i,j ≤n} for V such that each A'_{ij} is a characteristic vector of T.
 (3) Assume n ≥ 4 and let d₁ = d₂ = d₃ = 1 and d_i = 0 ∀ i ≥ 4. Find the minimal and characteristic polynomials of T.

Problem 6. Let V be a finite-dimensional vector space over F, T a linear operator on V, and W_1, \ldots, W_k subspaces of *V* invariant under *T* such that $V = \bigoplus_{i=1}^{n} W_i$. Let p_o denote the minimal polynomial of *T* and let p_i denote the minimal polynomial of T_{W_i} for each i = 1, ..., k.

Assume $p_0 = \prod_{i=1}^{n} q_i^{n_i}$ and, for each i, $p_i = q_i^{n_i}$, where q_1, \dots, q_k are distinct monic irreducible polynomials in F[x]and n_1, \ldots, n_k are nonzero positive integers.

Prove there is a vector α in *V* such that its *T*-annihilator p_{α} is equal to p_{0} .