Math 550 Linear Algebra (Term 211)

Final Exam (Duration = 3 hours)

Problem 1. Let *A* be a 7×7 complex matrix in *rational form* that has *two* distinct characteristic values and *four* invariant factors, and such that $A^3 + A^2 = A + I$. Let f denote the characteristic polynomial of A .

(1) Assume *A* is *diagonalizable* and *f*(0) > 0. Find *A* and its invariant factors.

.

(2) Assume *A* is *NOT diagonalizable* and *f*(0) < 0. Find *A* and its invariant factors.

Problem 2. Let *A* = $(0 -1 0$ $\overline{\mathcal{C}}$ 0 0 0 −1 2 1 λ $\begin{array}{c} \end{array}$

- **(1)** Reduce *xI*−*A* to its Smith normal form.
- **(2)** Find the Jordan form *J* of *A*.
- **(3)** Let *T* be a linear operator on \mathbb{R}^3 such that *A* is the matrix associated to *T* in the standard basis $\{e_1, e_2, e_3\}$. Find the respective *T*-annihilators of *e*1,*e*2, and *e*3.
- **(4)** Show that *T* has a cyclic vector; namely, find $\alpha \in \mathbb{R}^3$ such that $\mathbb{R}^3 = Z(\alpha, T)$, and give the matrix of *T* in the basis $S := \{ \alpha, T\alpha, T^2\alpha \}$

Problem 3. Consider the basis *S* := $\Bigg\{$ $\begin{cases} \beta_1 := \\ \end{cases}$ $\sqrt{0}$ $\overline{\mathcal{C}}$ 1 1 Í $\begin{array}{c} \end{array}$, $\beta_2 :=$ (1) $\overline{\mathcal{C}}$ 0 1 Í $\begin{array}{c} \n\end{array}$, $\beta_3 :=$ (1) $\overline{\mathcal{C}}$ 1 $\boldsymbol{0}$ $\left| \right|$ $\begin{array}{c} \end{array}$ \int in \mathbb{R}^3 equipped with the standard inner product.

(1) Apply the Gram-Schmidt process to *S* to obtain an *orthonormal* basis $B := \{a_1, a_2, a_3\}$

(2) Express an arbitary vector α := *x* $\overline{\mathcal{C}}$ *y z* λ $\begin{array}{c} \end{array}$ $\in \mathbb{R}^3$ as a linear combination of $\alpha_1, \alpha_2, \alpha_3$.

(3) Find the matrix *G* of the inner product in both bases *S* and *B*.

Problem 4. Let *V* be a finite-dimensional vector space over $F \subseteq \mathbb{C}$ and let L_1 and L_2 be two *nonzero* linear functionals on *V*. Consider the bilinear form

$$
f(\alpha, \beta) = L_1 \alpha L_2 \beta - L_1 \beta L_2 \alpha , \forall \alpha, \beta \in V
$$

(1) Show that L_1 and L_2 are linearly dependent $\Longleftrightarrow f = 0$

Next, let $V = \mathbb{R}^3$ and let

$$
L_1: \begin{array}{ccc} V & \longrightarrow & \mathbb{R} \\ \begin{pmatrix} x \\ y \\ z \end{pmatrix} & \mapsto & x+y \end{array} \begin{array}{ccc} \vdots & \begin{pmatrix} x \\ y \\ z \end{pmatrix} & \mapsto & y+z \end{array}
$$

(2) Find the matrix of *f* in the standard ordered basis $S := \{e_1, e_2, e_3\}$ and find the rank of *f*.

(3) Find an ordered basis $B := \{a_1, a_2, a_3\}$ such that the matrix of *f* in *B* is

$$
[f]_B = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
$$

Problem 5. Let *V* be a finite-dimensional vector space over *F* (= R or C). Let *W* be a subspace of *V*, so that *V* = *W* ⊕ *W*[⊥] (i.e., each $\alpha \in V$ is uniquely expressed in the form $\alpha = \beta + \gamma$ with $\beta \in W$ and $\gamma \in W^{\perp}$). Consider the linear operator

$$
T: V = W \oplus W^{\perp} \longrightarrow V
$$

$$
\alpha = \beta + \gamma \longrightarrow \beta - \gamma
$$

- (1) Let *E* be *the orthogonal projection of V on W.* Express *T* in terms of *E*; namely, find $a, b \in F$ such that $T = aE + bI$.
- **(2)** Use (1) to show that *T* is *self-adjoint* and *unitary*.
- **(3)** Next, let $V = \mathbb{R}^3$, with standard inner product, and let *W* be the subspace of \mathbb{R}^3 spanned by the vector *e* := (1) $\overline{\mathcal{C}}$ 1 θ Í $\begin{array}{c} \n\end{array}$. Find *E*.
- **(4)** Find the matrix of *T* in the standard ordered basis *S* := $\{e_1, e_2, e_3\}$ of \mathbb{R}^3 .

Problem 6. Let *V* be a finite-dimensional complex inner product space of dimension *n* and let *T* be a linear operator on *V*.

(1) Use induction on *n* to prove that there is an orthonormal basis $B := \{a_1, a_2, ..., a_n\}$ for *V* such that the matrix $\left[T\right]$ *B* is *upper triangular*.

(2) Let
$$
A := [T]_B = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \vdots \\ a_{nn} & \cdots & a_{nn} \end{pmatrix}
$$

Prove that if *T* is *normal*, then *A* is *diagonal*.