King Fahd University of Petroleum and Minerals Department of Mathematics

Math 550 Linear Algebra (Term 211)

Final Exam (Duration = 3 hours)

Problem 1. Let *A* be a 7×7 complex matrix in *rational form* that has *two* distinct characteristic values and *four* invariant factors, and such that $A^3 + A^2 = A + I$. Let *f* denote the characteristic polynomial of *A*.

- (1) Assume *A* is *diagonalizable* and f(0) > 0. Find *A* and its invariant factors.
- (2) Assume *A* is *NOT diagonalizable* and f(0) < 0. Find *A* and its invariant factors.

Problem 2. Let $A = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ -1 & 2 & 1 \end{pmatrix}$.

- (1) Reduce xI A to its Smith normal form.
- (2) Find the Jordan form *J* of *A*.
- (3) Let *T* be a linear operator on \mathbb{R}^3 such that *A* is the matrix associated to *T* in the standard basis $\{e_1, e_2, e_3\}$. Find the respective *T*-annihilators of e_1, e_2 , and e_3 .
- (4) Show that *T* has a cyclic vector; namely, find $\alpha \in \mathbb{R}^3$ such that $\mathbb{R}^3 = Z(\alpha, T)$, and give the matrix of *T* in the basis $S := \{\alpha, T\alpha, T^2\alpha\}$

Problem 3. Consider the basis $S := \left\{ \beta_1 := \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \beta_2 := \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \beta_3 := \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}$ in \mathbb{R}^3 equipped with the standard inner product.

(1) Apply the Gram-Schmidt process to *S* to obtain an *orthonormal* basis $B := \{\alpha_1, \alpha_2, \alpha_3\}$

(2) Express an arbitrary vector
$$\alpha := \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$$
 as a linear combination of $\alpha_1, \alpha_2, \alpha_3$.

(3) Find the matrix *G* of the inner product in both bases *S* and *B*.

Problem 4. Let *V* be a finite-dimensional vector space over $F \subseteq \mathbb{C}$ and let L_1 and L_2 be two *nonzero* linear functionals on *V*. Consider the bilinear form

$$f(\alpha,\beta) = L_1 \alpha \ L_2 \beta \ - \ L_1 \beta \ L_2 \alpha \ , \ \forall \ \alpha,\beta \in V$$

(1) Show that L_1 and L_2 are linearly dependent $\iff f = 0$

Next, let $V = \mathbb{R}^3$ and let

(2) Find the matrix of *f* in the standard ordered basis $S := \{e_1, e_2, e_3\}$ and find the rank of *f*.

(3) Find an ordered basis $B := \{\alpha_1, \alpha_2, \alpha_3\}$ such that the matrix of f in B is

$$\begin{bmatrix} f \end{bmatrix}_B = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Problem 5. Let *V* be a finite-dimensional vector space over *F* (= \mathbb{R} or \mathbb{C}). Let *W* be a subspace of *V*, so that $V = W \oplus W^{\perp}$ (i.e., each $\alpha \in V$ is uniquely expressed in the form $\alpha = \beta + \gamma$ with $\beta \in W$ and $\gamma \in W^{\perp}$). Consider the linear operator

$$T: V = W \oplus W^{\perp} \longrightarrow V$$
$$\alpha = \beta + \gamma \longmapsto \beta - \gamma$$

- (1) Let *E* be *the orthogonal projection of V on W*. Express *T* in terms of *E*; namely, find $a, b \in F$ such that T = aE + bI.
- (2) Use (1) to show that *T* is *self-adjoint* and *unitary*.
- (3) Next, let $V = \mathbb{R}^3$, with standard inner product, and let *W* be the subspace of \mathbb{R}^3 spanned by the vector $e := \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. Find *E*.
- (4) Find the matrix of *T* in the standard ordered basis $S := \{e_1, e_2, e_3\}$ of \mathbb{R}^3 .

Problem 6. Let *V* be a finite-dimensional complex inner product space of dimension *n* and let *T* be a linear operator on *V*.

(1) Use induction on *n* to prove that there is an orthonormal basis $B := \{\alpha_1, \alpha_2, ..., \alpha_n\}$ for *V* such that the matrix $[T]_B$ is *upper triangular*.

Prove that if *T* is *normal*, then *A* is *diagonal*.