King Fahd University of Petroleum and Minerals, Department of Mathematics- Term 221 Exam 1 : Math 550, Linear Algebra Duration: 3 Hours

NAME :

ID:

Exercise 1. (5-6-3-5-3)

Let V be an n-dimensional vector space over a field F, V^* its dual space.

(1) Prove that $dim(V) = dim(V^*)$.

Let $V = \mathbb{R}^3$, V^* its dual space, $B = \{u_1 = (1, 1, 1), u_2 = (1, 0, 1), u_3 = (1, 0, 0)\}$ a basis of V, $B^* = \{u_1^*, u_2^*, u_3^*\}$ its dual basis and T the linear operator on V defined by T(x, y, z) = (y - z, z - x, x - y).

- (2) Find the matrix $[T]_B$ representing T in the basis B.
- (3) Is T a nonsingular operator? Justify?
- (4) Find explicitly B^* .
- (5) Find $[T^t]_{B^*}$ where T^t is the operator transpose of T.

Exercise 2. (4-4-5-5 points)

Let $V = \mathcal{M}_n(\mathbb{R})$ be the real vector space of all $n \times n$ matrices with coefficients in \mathbb{R} , $\{A_{ij}\}_{1 \leq i,j \leq n}$ its standard basis where A_{ij} takes 1 in the *i*th row and *j*th column and zero elsewhere, V^* the dual space of V and consider the following subspaces of V and V^* respectively:

$$W_1 = \{ A \in V | AB = BA \text{ for every } B \in V \};$$

 $W_2 = \{ f \in V^* | f(A_{11}) + f(A_{22}) + \dots + f(A_{nn}) = 0 \}.$

- (1) Find AA_{ij} and $A_{ij}A$ for every $A \in V$ and i, j.
- (2) If D is a diagonal matrix of V, find DA_{i1} and $A_{i1}D$ for every $i \ge 2$.
- (3) Use (1) and (2) to prove that $W_1 = \{aI_n | a \in \mathbb{R}\}, I_n$ is the identity matrix.
- (4) Prove that W_2 is a hyperspace of V^* .

Exercise 3. (6-6-2-6-2-3 points)

Let V be a vector space over a field \mathbb{F} and T, H linear operators on V.

(1) Assume that $T = T^2$. Prove that $V = Ker(T) \bigoplus Im(T)$.

(2) Assume that $\dim_{\mathbb{F}}(V) = n$ and suppose that $H^n = 0$ and $H^{n-1} \neq 0$. Prove that

	(0)	0		0	0	
	1	0		0	0	
there is a basis B of V such that $[H]_B =$	0	1		0	0	
	÷	÷	÷	÷	÷	
	0		0	1	0	1

Applications: Assume that $V = \mathbb{R}^3$

(3) Set T(x, y, z) = (x + y, 0, x + y). Verify that $T = T^2$.

- (4) Find Ker(T), Im(T), their bases and their dimensions.
- (5) Set H(x, y, z) = (y + z, z, 0). Verify that $H^2 \neq 0$ and $H^3 = 0$.

(6) Find a basis *B* of *V* such that $[H]_B = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

Exercise 4. (6-4-5-5)

Let V be an n-dimensional over a field \mathbb{F} and T a linear operator on V.

(1) Prove by induction on $r \ge 2$ that if c_1, c_2, \ldots, c_r are **distinct** characteristic values of T with associated characteristic vectors v_1, v_2, \ldots, v_r (resp.), then v_1, v_2, \ldots, v_r are linearly independent.

(2) Assume that dim(range(T)) = r. Prove that T has at most r + 1 characteristic values.

(3) Assume that $\mathbb{F} = \mathbb{R}$ and *n* is odd. Prove that there is **no linear operator** *H* on *V* with minimal polynomial $p_H(X) = X^2 + 2X + 17$.

(4) Assume that $\mathbb{F} = \mathbb{C}$. Construct a linear operator L on $V = \mathbb{C}^3$ with minimal polynomial $X^2 + 2X + 17$.