Math 550 - Exam I 150 minutes

Max Score: 50

Name:

ID:

- Q1 [12 pts] Prove the following theorems:
 - 1) [6] Let W_1 and W_2 be finite-dimensional subspaces of a vector space V. Then the subspace $W_1 + W_2$ is finite-dimensional and:

$$\dim W_1 + \dim W_2 = \dim(W_1 \cap W_2) + \dim(W_1 + W_2)$$

2) [6] The rank-nullity theorem. (State the theorem, then prove it.)

Q2 [14 pts]. Consider the linear transformation:

$$T: \mathbb{R}^2 \to \mathbb{R}^3, \ T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ x-2y \\ 3x \end{bmatrix}$$

1) [6] Find $[T]_{B_1}^{B_2}$, where $B_1 = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$, and $B_2 = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$

- 2) [2] Find ker T. Is T an isomorphism? (Justify your answer.)
- 3) [6] Let f be a linear functional on \mathbb{R}^3 defined by $f \begin{bmatrix} x \\ y \\ z \end{bmatrix} = x 2y + 2z$. Define T^t and find $T^t(f)$.

Q3 [12 pts]. Let $V = \mathbb{R}^3$ and its dual be V^* .

1) [6] Find the dual basis of $G = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}.$

2) [6] Find a basis E of V whose dual basis $E^* = \{x + y + z, x - y - z, x - y + z\}$.

Q4 [12 pts]. Let $W = \{(1, -1, -2, -1), (2, -2, 3, 2), (3, -3, 1, 1), (8, -8, 5, 4)\}$

- 1) [6] Find a basis and the dimension of $\mathcal{U} = Span W$.
- 2) [6] Find a basis and the dimension of \mathcal{U}° .