Math 550-Exam I
 150 minutes

Max Score: 50

Name:

ID:
Q1 [12 pts] Prove the following theorems:

1) [6] Let W_{1} and W_{2} be finite-dimensional subspaces of a vector space V. Then the subspace $W_{1}+W_{2}$ is finite-dimensional and:

$$
\operatorname{dim} W_{1}+\operatorname{dim} W_{2}=\operatorname{dim}\left(W_{1} \cap W_{2}\right)+\operatorname{dim}\left(W_{1}+W_{2}\right)
$$

2) [6] The rank-nullity theorem. (State the theorem, then prove it.)

Q2 [14 pts]. Consider the linear transformation:

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+y \\
x-2 y \\
3 x
\end{array}\right]
$$

1) $[\mathbf{6}]$ Find $[T]_{B_{1}}^{B_{2}}$, where $B_{1}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$, and $B_{2}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$
2) [2] Find ker T. Is T an isomorphism? (Justify your answer.)
3) [6] Let f be a linear functional on \mathbb{R}^{3} defined by $f\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=x-2 y+2 z$. Define T^{t} and find $T^{t}(f)$.

Q3 [12 pts]. Let $V=\mathbb{R}^{3}$ and its dual be V^{*}.

1) $[6]$ Find the dual basis of $G=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$.
2) [6] Find a basis E of V whose dual basis $E^{*}=\{x+y+z, x-y-z, x-y+z\}$.

Q4 [12 pts]. Let $W=\{(1,-1,-2,-1),(2,-2,3,2),(3,-3,1,1),(8,-8,5,4)\}$

1) [6] Find a basis and the dimension of $\mathcal{U}=\operatorname{Span} W$.
2) [6] Find a basis and the dimension of \mathcal{U}°.
