Math 550 - Exam II 150 minutes

Max Score: 50

Name:

ID:

 $\mathbf{Q1}$

- (a) Define what we mean by a **diagonalizable** matrix, then give a **criterion** for the diagonalizability.
- (b) Define what we mean by a **triangulable** matrix, then give a **criterion** for the triangulability.
- (c) Give an example of a 2×2 matrix that is: triangulable but not diagonalizable.

Q2 State, without proof, the Primary Decomposition Theorem.

Q3 State, without proof, the Generalized Cayley-Hamilton Theorem.

 ${\bf Q4}$ Consider the matrix:

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & -1 & -1 & 1 \end{bmatrix}$$

- (a) Find the Smith normal form of xI A.
- (b) Find the invariant factors of A.
- (c) Find the rational form of A.
- (d) Suppose that T is a linear operator such that [T]_S = A. Write an explicit cyclic decomposition of ℝ⁴ under T.
 Hint: The eigenvalues of A are:

1)
$$\lambda_1 = 0$$
, and $E_{\lambda_1} = Span \left\{ \begin{bmatrix} -1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1\\0\\0\\1 \end{bmatrix} \right\}$
2) $\lambda_2 = 1$, and $E_{\lambda_2} = Span \left\{ \begin{bmatrix} 0\\0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0\\1 \end{bmatrix} \right\}$

Q5 Consider the matrix:

$$M = \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 0 \end{bmatrix}, \quad a, b, c \in \mathbb{R}$$

1) Find all values of a, b, and c such that M is diagonalizable.

2) Suppose that a = 1, b = 0, and c = 1. That is, $M = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$.

Then: Find a diagonalizable matrix D and a nilpotent matrix N such that M = D + N and DN = ND.

Q6 Find all possible Jordan forms of a matrix with characteristic polynomial $f = (x - 2)(x-1)^2$. Then, distinguish the one(s) corresponding to the case when nullity(T-I) = 1.

BONUS QUESTION Consider the two matrices:

L =	[1	1	1	$M = \begin{bmatrix} 2\\ 0\\ 0 \end{bmatrix}$	2	1	-1
L =	1	1	1	$M = \begin{bmatrix} 0 \end{bmatrix}$	0	1	1
	1	1	1	L	0	0	2

- 1) Prove that L and M are simultaneously diagonalizable.
- 2) Find a matrix P that diagonalizes both L and M. That is, find P such that: $P^{-1}LP$ is diagonal AND $P^{-1}MP$ is diagonal.

Hint:

The eigenvalues of L are: $\lambda_1 = 0$ with am = 2, and $\lambda_2 = 3$ with am = 1. The eigenvalues of M are: $\lambda_1 = 2$ with am = 2, and $\lambda_2 = 1$ with am = 1.