King Fahd University of Petroleum and Minerals, Department of Mathematics- Term 241 Final Exam : Math 550, Linear Algebra Duration: 4 Hours

NAME :

ID:

Problem 1:----/18

Problem 2:----/15

Problem 3:----/20

Problem 4:----/13

Problem 5:----/22

Problem 6:——/12

Total:----/100

Problem 1. (4-3-4-3)

Let V be a finite-dimensional vector space over a field \mathbb{F} and V^* its dual space.

(1) Prove that $dimV = dimV^*$.

Set $V = \mathbb{R}^3$ and let $B = \{(1, 0, 1), (1, 1, 1), (0, 0, 1)\}$ and $B' = \{(1, 0, 1), (0, 1, 0), (-1, 0, 0)\}$ two bases for V.

- (2) Find the transition matrix P from B to B'.
- (3) Let *T* a linear operator on *V* with $[T]_B = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ -1 & 2 & 0 \end{pmatrix}$. Find $[T]_{B'}$.
- (4) Find the dual basis B^* of B.

(5) Let $f: V \longrightarrow \mathbb{R}$ defined by f(x, y, z) = x + y - z. Express f is the basis B^* .

Problem 2. (4-3-4-4 points)

Let V be an inner product space over a field \mathbb{F} and T be an invertible linear operator on V.

(1) Prove that there are (unique) unitary operator U and non-negative operator N such that T = UN.

Application: Let $V = \mathbb{R}^3$ be the real standard inner product space, $S = \{e_1, e_2, e_3\}$ its standard basis and and T the linear operator on V defined by: T(x, y, z) = (4y, 4x, 5z).

- (2) Verify that T is a diagonalizable normal operator.
- (3) Find the spectral resolution of T.
- (4) Find the Polar Decomposition of T.

Problem 3. (4-2-5-3-3 points)

Let V be an n-dimensional complex inner product space, T a linear operator on V, W a subspace of V and $W^{\perp} = \{y \in V | (x|y) = 0 \text{ for every } x \in W\}$. Define the function inner product $f: V \times V \longrightarrow \mathbb{C}$ by f(x, y) = (x|y).

(1) Prove that f is a continuous functions. (Hint: use Cauchy-Schwartz inequality) (2) Deduce that W^{\perp} is closed (i.e. if $\{y_n\}_n$ is a sequence of elements of W^{\perp} that converges to y, then $y \in W^{\perp}$.

(3) Prove that T is self adjoint if and only if $(T\alpha|\alpha)$ is a real number for every $\alpha \in V$.

(4) Prove that if T is self-adjoint, then the characterestic values of T are real numbers.

(5) Prove that if T is unitary, then |c| = 1 for every characterestic values of T.

2

(6) Find an example of a normal operator on a **real inner product space** that is not diagonalizable.

Problem 4. (5-4-4 points)

Let $V = \mathbb{P}_2 := \{f(X) \in \mathbb{R}[X] | deg(f) \leq 2\}$ be the real-inner product space of all polynomials of degree ≤ 2 , with the scalar product $(f|g) = \int_0^1 f(x)g(x)dx$, and standard basis $S = \{1, x, x^2\}$. Let D be the differential operator on V and D^* its adjoint.

- (1) Use Gram-Schimdt to find an orthonormal basis B of V.
- (2) Find the matrices $[D]_B$ and $[D^*]_B$ representing D and D^* in the basis B.
- (3) Is D a normal operator on V? Justify.

Problem 5. (3-3-4-4-4 points)

Let V be an n-dimensional complex inner product space $(n \ge 3)$ and T a normal linear operator.

(1) Prove that $Nullspace(T) = Nullspace(T^*)$.

(2) Prove that Nullspace(T) is the orthogonal complement of range(T) (that is, $Nullspace(T) = (rang(T))^{\perp}$.

(3) Prove that for every polynomial g(X), g(T) is a normal operator.

(4) Suppose that there are two polynomials f(X) and g(X) relatively prime and $\alpha, \beta \in V$ such that $f(T)\alpha = g(T)\beta = 0$. Prove that $(\alpha|\beta) = 0$.

(5) Assme that T satisfies $T^n - 4T^{n-2} - T^2 + 4I = 0$. Prove that T is diagonalizable.

(6) Prove that there is a polynomial $h \in \mathbb{C}[X]$ such that $T^* = h(T)$.

Problem 6. (4-4-4)

Let V be a vector space over a field \mathbb{F} , f a bilinear forms on V and q its associated quadratic form.

(1) Suppose that there is $v \in V$ such that $q(v) \neq 0$. Let $W = span\{v\}$ and $W^{\perp} = \{u \in V | f(u, v) = 0\}$ its orthogonal. Prove that $V = W \oplus W^{\perp}$.

Assume that f is symmetric given by $f(X, Y) = x_1x_2 + 2x_1y_2 + 2x_1z_2 + 2y_1x_2 + 4y_1y_2 + 8y_1z_2 + 2z_1x_2 + 8z_1y_2 + 4z_1z_2$ for every $X = (x_1, y_1, z_1)$ and $Y = (x_2, y_2, z_2)$. (2) Find the quadratic form q associated to f and the matrix A representing f in the standard basis.

(3) Find the canonical form of q. What is the signature of q?