KFUPM/ Department of Mathematics/T231/MATH 551/ Exam 1/
Name:
ID \#:
[Justify all answers.]

1. [12pts] (a) Let R be a ring with $1 \neq 0$. Show that if R is a division ring, then R has exactly two left ideals. Is the converse true?
(b) Let $f: R \longrightarrow S$ be a ring homomorphism, where R and S are commutative rings. Prove that if Q is a prime ideal of S and $f^{-1}(Q) \neq R$, then $f^{-1}(Q)$ is a prime ideal of R containing ker f.
(c) Is there a ring homomorphism $g: \mathbb{C} \longrightarrow \mathbb{R}$ such that $f(1)=1$?
2. [8pts] Let R be a ring with $1 \neq 0$ and let A be a submodule of a left R-module B.
(a) Prove that if B is finitely generated, then so too is B / A.
(b) Is the subset I of R defined as $\{r \in R: r B \subseteq A\}$ a right ideal of R ? a left ideal of R ?
3. [8pts] (a) Let $f: A \longrightarrow B$ be a homomorphism of left R-modules and let C be a submodule of A. Prove that $f^{-1}(f(C))=C+\operatorname{ker} f$.
(b) Let M be a left R-module with submodules A and B and let $f: M \longrightarrow N$ be an R-module homomorphism. Suppose $A \cap B=\operatorname{ker} f$.
(i) Prove that $f(A) \cap f(B)=0$.
(ii) Is it true that $f(A+B)=f(A)+f(B)$ (d.s.) ?
4. [8pts] (a) Let $A \xrightarrow{f} B \xrightarrow{g} C$ be an exact sequence of left R-modules and R-homomorphisms, where f is surjective and g is injective. Prove that $B=0$.
(b) Let A and B be submodules of a left R-module M. Consider the sequence

$$
0 \longrightarrow A \cap B \xrightarrow{f} A \times B \xrightarrow{g} A+B \longrightarrow 0
$$

where f and g are the R-homomorphisms given $f(x)=(x, x)$ and $g(x, y)=x-y$. Prove that this sequence is exact.

